Motivation Results vs. SotA models
Safe and comfortable driving requires to predict future actions of other ¢ Near-SotA In-Distribution performance with:

traffic participants. Predictions algorithms should combine accuracy » only 3.4% decrease In prediction accuracy
and speed with robustness against changes in the data distribution. » only 40.8% of the input data size
We present a new prediction model that combines all of these traits. * only 4.5% of the model size

* only 3.9% of the model inference time
Significantly improved robustness with reduced “performance
drop” over SotA models in Out-of-Distribution test cases
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Technical Problem

In a single motion dataset, test examples share similarities with the
training samples, such as the sensor setup, map representation, post- - FMAE-noAug
processing, geographic, and scenario selection biases employed In - QCNet-noAug
dataset creation. Consequently, the test scores reported In each - EP-noAug (Ours)
motion competition are examples of In-Distribution (ID) testing.

The differences in the data collection processes and sensor platforms v o+ (Prediction Horizon: 4.1s
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opportunity to perform Out-of-Distribution (OoD) testing on truly E 1 5. ((23'32.2% O.Zgétm o.4J1r30m _
independent data samples. However, this also comes with the Q LR MR 0022
challenges of working around inconsistencies in data formats and § 1.0-
prediction tasks between datasets.
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ID Test Figure 2: The OoD testing results of QCNet [5], Forecast-MAE (FMAE) [6], EP and their variants. We indicate the

absolute and relative difference in displacement error between ID and OoD results. Solid: The ID results by training
WAYM O WAYM O on the homogenized Argoverse2 training set and testing on the homogenized Argoverse2 validation set.
Transparent: The increased displacement error in OoD testing by training on the homogenized Argoverse2 training

Figure 1: An illustration for In-Distribution and Out-of-Distribution tests between Argoverse 2 [1] and Waymo Motion set and testing on the homogenized Waymo validation set. (© Continental AG)
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(proposed and validated In [3, 4]). —

Figure 3: Our proposed model architecture. Inputs: Agent histories and road geometry are both represented via
polynomials. Outputs: The current object Rinematics and future Rinematic states predicted by the model are fused
into one continuous polynomial trajectory prediction. (© Continental AG)
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