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Motivation
Safe and comfortable driving requires to predict future actions of other

traffic participants. Predictions algorithms should combine accuracy

and speed with robustness against changes in the data distribution.

We present a new prediction model that combines all of these traits.

Technical Problem

In a single motion dataset, test examples share similarities with the

training samples, such as the sensor setup, map representation, post-

processing, geographic, and scenario selection biases employed in 

dataset creation. Consequently, the test scores reported in each

motion competition are examples of In-Distribution (ID) testing.

The differences in the data collection processes and sensor platforms

between motion datasets of different origin present us with the

opportunity to perform Out-of-Distribution (OoD) testing on truly

independent data samples. However, this also comes with the

challenges of working around inconsistencies in data formats and

prediction tasks between datasets.

Contributions:

• A dataset homogenization protocol that enables OoD testing of

prediction algorithms across different large-scale motion datasets.

• Study of the OoD robustness of two SotA models and explore the

effect of their augmentation strategies on ID and OoD test results.

• An efficient multi-modal predictor baseline with competitive ID

performance and superior OoD robustness by representing

trajectories and map features parametrically as polynomials 

(proposed and validated in [3, 4]).
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Figure 2: The OoD testing results of QCNet [5], Forecast-MAE (FMAE) [6], EP and their variants. We indicate the
absolute and relative difference in displacement error between ID and OoD results. Solid: The ID results by training
on the homogenized Argoverse2 training set and testing on the homogenized Argoverse2 validation set.
Transparent: The increased displacement error in OoD testing by training on the homogenized Argoverse2 training
set and testing on the homogenized Waymo validation set. (© Continental AG) 
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Figure 1: An illustration for In-Distribution and Out-of-Distribution tests between Argoverse 2 [1] and Waymo Motion 

[2] Datasets   (© Continental AG) 

Figure 3:  Our proposed model architecture. Inputs: Agent histories and road geometry are both represented via 

polynomials. Outputs: The current object kinematics and future kinematic states predicted by the model are fused 

into one continuous polynomial trajectory prediction.   (© Continental AG) 

     

                     

                      

               

                      

                      

                    

             

              

                       
                                   

              

         

          

                      

                      

             

Results vs. SotA models
• Near-SotA In-Distribution performance with:

• only 3.4% decrease in prediction accuracy 

• only 40.8% of the input data size

• only 4.5% of the model size

• only 3.9% of the model inference time

• Significantly improved robustness with reduced “performance 

drop” over SotA models in Out-of-Distribution test cases
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