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Abstract— Linear trajectory models provide mathematical
advantages to autonomous driving applications such as motion
prediction. However, linear models’ expressive power and bias
for real-world trajectories have not been thoroughly analyzed.
We present an in-depth empirical analysis of the trade-off
between model complexity and fit error in modelling object
trajectories. We analyze vehicle, cyclist, and pedestrian tra-
jectories. Our methodology estimates observation noise and
prior distributions over model parameters from several large-
scale datasets. Incorporating these priors can then regularize
prediction models. Our results show that linear models do
represent real-world trajectories with high fidelity at very
moderate model complexity. This suggests the feasibility of
using linear trajectory models in future motion prediction
systems with inherent mathematical advantages.

I. INTRODUCTION

The prediction of other traffic participants’ future trajecto-
ries is an important input to the motion planning systems of
autonomous agents. Recently, a number of large datasets of
real-world traffic scenarios, e.g. Argoverse Motion Forecast-
ing v1.1 (A1) [1], Argoverse 2 Motion Forecasting (A2) [2]
and Waymo Open Motion (WO) [3], have been made avail-
able and corresponding prediction challenges have sparked a
large interest in designing trajectory prediction systems.

As one of the most widely used criteria of prediction ac-
curacy in these challenges, the displacement error measures
the difference between the predicted object positions and the
noisy observations of the object positions over the prediction
horizon.

Figure 1 shows how we can decompose the total displace-
ment error produced by any prediction system into three
independent components:

• Observation noise: Deviation between ground truth and
observations that is intrinsic to the data(set) and its
collection process.

• Representation error: Deviation between ground truth
and predictions due to a trajectory modelling choice.

• Prediction error: Deviation between ground truth and
predictions due to the inadequacies of the prediction
system and missing input information such as agents’
intentions.

We denote fit error as the sum of representation error
and observation noise to describe how much a trajectory
representation model deviates from observations.
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Fig. 1. The decomposition of the total displacement error from prediction
system.

Linear trajectory models, i.e. linear combination of basis
fuctions, such as polynomials, are one of the model-based
approaches for representing predicted trajectories in recent
works [4], [5]. Linear models bring many advantages (cf.
Section III) into the prediction task and real applications
[6]. As an example, instead of predicting future states se-
quentially, the prediction task can be simplified as predicting
the polynomial parameters of trajectories. However, linear
models have limited expressive power depending on model
complexity and introduce representation error (bias) into the
total displacement error.

Though linear trajectory models are used in recent works,
the following questions have not been studied extensively:

• What is the optimal model complexity for representing
trajectories with different timescales?

• How much representation error is introduced by linear
models of trajectories?

The public datasets provide noisy observations rather than
ground truth, thus we will answer the second question by
analyzing the fit error as the upper bound of representation
error as visualized in Figure 1.

In this work, we study the general class of linear models
with polynomial basis functions and investigate the trade-
off between model complexity, i.e., flexibility, and model
fit in a principled manner and on a large scale. Our focus
is the general characterization of linear trajectory models
independent of any particular prediction method. Hence, we
deliberately do not analyze the performance difference of any
prediction models integrating linear trajectory models. This
avoids conflating representation error and prediction error in
our work. Our key contributions are as follows:

• An extensive empirical investigation of the fit error
of polynomial trajectory representations for different
classes of traffic participants in public datasets.

• Estimation of prior distributions over observation noise
and model parameters using the Empirical Bayes
method.

• Estimation of the optimal model complexity from noisy
trajectory data.



To the best of our knowledge, this work is the first that
estimates noise levels in trajectory prediction datasets in a
grounded manner.

Our discussion will proceed as follows: We will first
summarize some of the theoretical advantages of polynomial
representations. We introduce the Empirical Bayes method to
estimate prior distributions over model parameters and ob-
servation noise. We characterize the trade-off between model
complexity, i.e. the number of basis functions used, and
data-fit. For this, we employ information theoretic measures
and average fit error between the trajectory representation
and the data. In three large public datasets and for three
different classes of traffic participants, we investigate this
trade-off for trajectories of various lengths and determine the
optimal model complexities. Compared to the estimated total
displacement error reported for state-of-the art prediction
systems, we show that the fit error is indeed small. From this,
we conclude that model-based representations currently do
not limit prediction performance and argue for the feasibility
of their use in prediction systems.

We release our demo for analyzing WO in [7].

II. RELATED WORK

Fig. 2. An example of expression flexibility of sequence-based represen-
tations and model-based representations.

Many prediction systems employ sequence-based repre-
sentation for the output, e.g., as a sequence of positions [8]–
[10] or control states (acceleration and turn rate) [11], [12]
at fixed time-points over the prediction horizon. Sequence-
based approaches appear, at first glance, as very rational tra-
jectory representations, having the same format as observa-
tions in datasets. Sequence-based approaches are examples of
unbiased representations that have no representation error by
design. They can express even random, erratic trajectories as
in Figure 2. The downside of unbiasedness for any estimator
is the high variance which typically requires more training
data and the fact that sequence-based representations amal-
gamate the observation uncertainty and the actual motion of
the objects being modelled. Additionally, the computational
requirements of these approaches scale with the length and
temporal resolution of the prediction horizon.

On the other hand, parametric, or model-based, trajectory
representations are used less as output representations in
recent works. Scholler et al. [13] for example argue that
predicting pedestrian trajectories as straight lines, i.e. polyno-
mials of degree 1, yields competitive prediction performance.
Vehicle trajectories are represented as polynomials of at most
degree 4 in [4], [5]. Su et al. [5] highlight the temporal
continuity, i.e. the ability to provide arbitrary temporal
resolution, of this representation. Reichardt [6] argues for

the use of polynomial representations to integrate trajectory
tracking and prediction into a filtering problem. Model-
based trajectory representations place restrictions on the
kind of trajectories that can be predicted and introduce bias
into prediction systems. This limited flexibility is generally
associated with lower demands for training data and greater
computational efficiency. The deliberate choice of a model,
its parameters and associated prior distributions can directly
encode knowledge about the system behavior that serves as
a regularizer for prediction models.

III. LINEAR MODELS OF TRAJECTORIES

In contrast to paths, i.e. curves in space, trajectories are
curves in space and time. Over any finite time horizon
[t0, t0+T ], the position of an object c(τ) ∈ Rd at (rescaled)
time τ = t−t0

T can be expressed as a linear combination of
n + 1 fixed basis functions of time ϕk(τ) : R → R and
parameters ωk ∈ Rd:

c(τ) =

n∑
k=0

ϕk(τ)wk. (1)

It allows us to incorporate prior knowledge about object
trajectories via the basis functions ϕk(τ). For example,
since traffic participants carry mass and underlie physical
constraints on how much force they can exert as well as
having strong preferences for smooth motion [14]–[16], we
can choose a small number n+1 of smooth basis functions
and model deviations from smooth behavior as random noise.

We now discuss the benefits of linear models for repre-
senting trajectories:

1) Parameters ωk have spatial semantics. Taking the Bern-
stein polynomial as an example, the curve c is the
Bezier curve and the parameters ωk are control points.
This allows the formulation of prior distributions based
on spatial information, which is advantageous to reg-
ularize and inform predictions of traffic participants’
future motion [17]. Without loss of generality, we can
constrain the range of ϕk(τ) to the interval [0, 1] and
this automatically constrains c(τ) to the convex hull of
the ωk.

2) The transformation of c(τ) is equivalent to applying
the same transformation to the ωk and vice versa,
which significantly simplifies applications with moving
sensors.

3) Temporal derivatives only affect the basis functions
ċ(τ) =

∑n
k=0 ϕ̇k(τ)ωk, i.e. positions, velocities, ac-

celerations and higher derivatives share the same pa-
rameterization!

4) Spatio-temporal distributions over the kinematic state
of an object at any point in time can be readily derived
from distributions over the parameters ωk.

5) We may estimate the parameters ωk via the solution of
a linear system from either measurements of position
at different time-points or measurements of different
derivatives at the same time-point, or combinations
thereof. For example, with n = 5 we only need position,



velocity and acceleration at two time-points τ and
τ +∆τ as 6 constraints in order to fully determine all
6 trajectory parameters ωk.

6) The linear combination of basis functions enables a
common trajectory representation in tracking, filtering
and prediction applications, e.g. parameters of the past
trajectory can be tracked and parameters of the future
trajectory will be predicted. It even allows the formu-
lation of the trajectory prediction problem as a filtering
problem [6]. In these applications, the trajectory pa-
rameters ωk replace the conventionally used kinematic
state variables for tracking, filtering and prediction.
The motion models in such applications can then be
informed and regularized by prior distributions over ωk.

IV. ESTIMATION OF FIT ERROR

We summarized the characteristics of 3 large-scale datasets
in Table I. Datasets for training and evaluating trajectory
prediction methods are obtained from a moving sensor
platform (ego vehicle) during measurement campaigns. Ob-
ject detections are tracked and transformed into a world
coordinate system and reported in the dataset. Each dataset
selects one or multiple objects of interest in one scenario
and refers to them as agents. Rather than ground truth,
object positions and kinematics in the data represent noisy
estimates. Hence, when fitting trajectory models to the data
in order to measure the fit error, we need to regularize
and take the observation noise into account explicitly, i.e.
we need to perform a Bayesian regression. The kinematic
variables provided in datasets vary, but all provide position
measurements for object centroids, which is what we focus
on here. Figure 3 shows a typical example.

TABLE I
DATASETS CHARACTERISTICS

Dataset (training split) A1 [1] A2 [2] WO [3]
#scenarios, #ego trajectories 206K 200K 487K
#agent (vehicle) trajectories 206K 176K 1.84M
#agent (cyclist) trajectories - 3K 63K
#agent (pedestrian) trajectories - 14K 232K
maximal time horizon [s] 5 11 9
#cities 2 6 6
sampling rate 10 Hz

trajectory
information

position 2D 2D 3D
velocity - 2D 2D

orientation - ✓ ✓
timestamp ✓ ✓ ✓

In order to formulate the regression, we will introduce
some definitions for notational convenience. We form a
parameter vector ω ∈ R(n+1)d as ω = [ω0, · · · ,ωn]

⊤.
Then we can express a Gaussian prior over parameters
p(ω) = N (ω|0,Σω). The prior has zero mean due to
symmetry and a full covariance Σω that allows expressing
correlations between spatial dimensions. We form a vector
of basis functions ϕ(τ) ∈ Rn+1 by concatenation ϕ(τ) =
[ϕ0(τ), · · · , ϕn(τ)]

⊤. In this notation, equation (1) is then
written as c(τ) = (ϕ⊤(τ) ⊗ Id)ω, where Id is a d × d
identity matrix and the Kronecker product ⊗ distributes the

basis functions over the d spatial dimensions. Data for a
single object i consists of m sample points at discrete time-
points τi,1, ..., τi,m. We can arrange all modelled trajectory
points of the object i into a vector ci ∈ Rmd as ci =
[ci(τi,1), · · · , ci(τi,m)]⊤ noting that the sample times, in
general, are different for different objects. By introducing the
(n+1)d×md matrix Φi = [ϕ(τi,1)⊗ Id, · · · ,ϕ(τi,m)⊗ Id]
we can write most compactly ci = Φ⊤

i ω.
We denote the observed trajectory as cobi for the ith

object and cobi,j for jth sample point to distinguish them
from our model notation. We assume additive zero mean
Gaussian observation noise with d × d covariance matrix
Σo,i,j depending on the object index i and the sample point
j: cobi,j = ci,j + η, η ∼ N (0,Σo,i,j)

Assuming statistically independent noise along a single
trajectory, we form the observation noise covariance for
ci as an md × md block diagonal matrix Σo,i where the
jth diagonal block is given by Σo,i,j . The left part of
Figure 3 illustrates the time and trajectory dependence of
the observation noise. Note how it rotates and scales due to
the angular and distance dependence of the observation noise
to the sensors on the ego vehicle.

Using this notation, the posterior estimate of model pa-
rameters for a single trajectory ci is given in closed form
[18, pp. 232–234]:

Σpost
ω,i =(Σ−1

ω +ΦiΣ
−1
o,iΦ

⊤
i )

−1

ωpost
i =Σpost

ω,i ΦiΣ
−1
o,i c

ob
i

(2)

With this improved parameter estimate from (2), we can
then compute the average fit error (AFE) along each trajec-
tory in an entire dataset:

AFE =
1

Nm

N∑
i

m∑
j

||(ϕ⊤(τi,j)⊗ Id)ω
post
i − cobi,j ||2 (3)

For vehicles, the projection of the AFE onto the lon-
gitudinal and lateral direction of motion are of particular
interest for driving applications. We denote these projections
as AFElon and AFElat. The object heading is either provided
directly in the data (A2 and WO) or is inferred from a Rauch-
Tung-Striebel (RTS) smoothing of the data (A1, cf. Section
VI-A).

The above estimation of fit error requires the specification
of observation covariance Σo,i, prior covariance Σω and
model complexity n - neither of which is given. We now
employ the Empirical Bayes Method to estimate all three
quantities.

V. EMPIRICAL BAYES METHOD

The Empirical Bayes approach [19] allows us to bootstrap
prior distributions over model parameters if many inde-
pendent samples of the same phenomenon are observed,
such as the object trajectories in our datasets. The idea
is to formulate the likelihood of all observed trajectories
C as a function of the prior parameters alone. This can
be achieved by marginalizing the actual model parameters.
Optimal prior parameters maximize the resulting, so-called,
type-II likelihood.



Fig. 3. Left: A typical scene from a trajectory prediction dataset, here Argoverse Motion Forecasting v1.1 [1]. Data is gathered by a moving sensor
platform (ego vehicle) and subsequently transformed into a fixed world coordinate frame. As distance and angle between sensor and agent change during
recording, the observation covariance of agent locations stretches and rotates over time. We show all sample points and a few 95% confidence ellipses for
agent position, enlarged by a factor of 4 for better visibility. Right: The same agent trajectory as in the left figure but fitted with a 5-degree polynomial
trajectory representation estimated via eq. (2). The resulting posterior covariances for agent positions are enlarged by a factor of 8 for better visibility.

In an ideal world, the only prior parameter to be estimated
would be the covariance matrix Σω . The observation noise
covariance matrices Σo,i,j would be derived from the ego
vehicle’s sensor setup and given with the dataset. Unfortu-
nately, the Σo,i,j are not provided in any dataset and so we
have to reverse engineer, i.e. estimate, them from the data.

Clearly, we cannot estimate individual Σo,i,j for every tra-
jectory and every time-point. Instead, we provide a structured
parameterization in the form Σo,i,j = Σo(θ).

Since ego trajectories and agent trajectories result from
different sensor setups, we also differentiate the parameteri-
zation of their noise models.

A. Observation Noise Covariance for Ego Trajectories
We model the observation noise covariance for ego trajec-

tories in world coordinates, assuming constant observation
noise in x and y direction for all sample points. The
covariance for one observation point is expressed as:

Σego,world
o,i,j = Σego,world

o =

[
σ2
x σxy

σxy σ2
y

]
(4)

with σ2
x = σ2

y = σ2
diag and σxy = σcov. We can ex-

tend it to the covariance of one complete ego trajectory
via Σo,i(θego) = Im ⊗ Σego,world

o and thus for all ego
trajectories, we only have two parameters to estimate θego =
[σdiag, σcov].

B. Observation Noise Covariance for Agent Trajectories
Since the ego vehicles used in the datasets feature a

suite of LIDAR sensors, the observation uncertainty for
agents is best expressed in polar coordinates. We assume
a constant angular resolution (σ2

α) and variable distance
resolution (σ2

r,i,j):

Σagent,polar
o,i,j =

[
σ2
r,i,j 0
0 σ2

α

]
(5)

We model σ2
r,i,j as an increasing function of the measured

distance ri,j between agent and ego at the jth sample point
(j ∈ [1, 2, . . . ,m]) with parameters [β0, β1, β2] ∈ R+:

σ2
r,i,j = β0 + β1ri,j + β2r

2
i,j (6)

Clearly, this is not perfect since we are using observations to
parameterize the uncertainty of these very observations. But
it is the best approach we have and it is safe to assume σ2

r,i,j

varies only slightly within the uncertainty of ri,j . Next, we
transform the observation covariance from the polar frame
to the Cartesian ego frame Σagent,ego

o,i,j based on [20, p. 77].
Finally, we rotate Σagent,ego

o,i,j from the ego frame to the
world frame with:

Σagent,world
o,i,j = Ri,j(Σ

agent,ego
o,i,j + σ2

cId)R
⊤
i,j (7)

where Ri,j denotes the rotation matrix at jth timestamp in
the ith agent trajectory. The additional diagonal term σ2

c is
necessary to model errors resulting from timing instability
of the tracking system especially at close ranges.

The observation covariance Σo,i(θagent) for one complete
agent trajectory is then an md ×md block diagonal matrix
where the jth block is given by Σagent,world

o,i,j . Hence, we have
only 5 parameters to estimate: θagent = [σα, β0, β1, β2, σc].
We illustrate one example with our observation covariance
model in Figure 3 with covariance marked as black ellipses.

C. Estimating Prior Parameters via Empirical Bayes

Finally, we are in the position to formulate the type-II
likelihood. Following [18, pp. 172–176], we obtain:

p(C|Σo(θ),Σω) =

N∏
i=1

∫
N (cobi |Φ⊤

i ω,Σo,i(θ))

×N (ω|0,Σω)dω

=

N∏
i=1

N (cobi |0,Σo,i(θ) +Φ⊤
i ΣωΦi)

(8)
where C denotes all N trajectories in the dataset. We
maximize the log of (8) with respect to Σω and θ for ego and
agent trajectories separately using gradient descent method
[21]. These optima represent the prior parameters estimated
from the dataset:

θ̂, Σ̂ω = argmax
θ,Σω

log(p(C|Σo(θ),Σω)) (9)



For any model complexity n, we can thus estimate
Bayesian optimal trajectory representations from given data
by plugging the estimated prior parameters Σ̂ω and Σo,i(θ̂)
into (2).

With increasing n we will be able to achieve smaller AFE
and estimate lower observation noise at the expense of an
increasing number of parameters, i.e. we will start to overfit.
We next find the optimal trade-off between data fit and model
complexity.

D. Estimating Optimal Model Complexity

The Akaike Information Criterion (AIC) [22] and
Bayesian Information Criterion (BIC) [23] characterize the
score for a model in terms of how well it fits the data, minus
how complex the model is to define. AIC and BIC are defined
as:

AIC =
log(p(C|Σo(θ),Σω))

N
− dof(θ,Σω)

BIC =
log(p(C|Σo(θ),Σω))

N
− dof(θ,Σω)

2
log(m)

(10)

where dof(θ,Σω) = dof(θ) + d(n + 1)(d(n + 1) + 1)/2
denotes the degrees of freedom in the observation covariance
and model parameter covariance. For ego and agent trajec-
tories, dof(θego) = 2 and dof(θagent) = 5, respectively.
A maximum of either criterion as a function of n indicates
optimal trade-off between data-fit and model complexity. In
general, BIC penalizes model complexity higher and tends
to pick a simpler model.

VI. EXPERIMENTS

A. Preprocessing: Data Selection and Outlier Detection

For comparability, we only analyze the training set and
limit our analysis to vehicle trajectories in A1 and addi-
tionally consider cyclist and pedestrian trajectories in A2
and WO. We analyze trajectories for time horizons T ∈
[3s, 5s, 8s]. For T smaller than the maximal observation
horizon in the dataset, we select time windows of size
T in strides of 1s for A1 and randomly, one from each
trajectory, for A2 and WO. From the much larger set of
vehicle trajectories in WO, we limit our analysis to a random
sample of 300k (without outlier) from 1.84 million vehicle
trajectories to reduce computational cost.

Timestamps do not exactly follow the sampling rate. We
consider all samples that are within sensor range of the ego
vehicle for T−0.5s to T+0.5s in the analysis of time horizon
T , but discard all static trajectories with lengths ≤ 0.5m as
these can be trivially represented with small error.

We notice a number of outliers in the data due to tracking
loss and inconsistent timing, i.e. objects are reported at
physically impossible locations for the given timestamps.
To automatically detect and discard such trajectories, we
employ a Rauch-Tung-Striebel (RTS) smoothing of the data
with a double integrator based on [24, p. 48] and adjust the
parameters according to [24, p. 59]. We discard trajectories
for which the RTS-Smoother estimates positions more than
2m away from observation or the estimated longitudinal

acceleration (deceleration) exceeds a 6m
s2 (−10m

s2 ) threshold
for vehicles [25], 2m

s2 (−4m
s2 ) threshold for cyclists [26],

and 2m
s2 (−3m

s2 ) threshold for pedestrians. Table II gives an
overview of the percentage of outliers in datasets discarded
for trajectories of time horizon T = 5s.

We notice the timing issue in A1, where T varies from
4.81s to 25.64s for 50 sample points with 10Hz [27]. The
RTS-Smoother detects ego outliers in A2 due to the unstable
velocity estimation at the trajectory’s start or end. In WO,
we find quantities of outliers detected by RTS-Smoother
primarily because the agents leave the sensor range and their
positions reset to (0, 0). WO flags these trajectory points as
non-valid.

TABLE II
PERCENTAGE OF OUTLIERS FOR T = 5S TRAJECTORY

Datasets A1 A2 WO

ego

time 22.81 0 0.02
static 23.95 20.66 25.41

out of view 0 0 0
RTS 0 1.18 0
total 42.95 21.84 25.42

agent
vehicle

time 22.81 0 0.02
static 0 4.95 1.70

out of view 0 0 19.40
RTS 6.81 0.86 19.45
total 28.11 5.81 20.83

agent
cyclist

time - 0 0.02
static - 1.04 1.43

out of view - 0 24.12
RTS - 3.91 24.58
total - 4.94 25.62

agent
pedestrian

time - 0 0.02
static - 0.19 1.32

out of view - 0 32.20
RTS - 0.76 32.25
total - 0.93 33.12

B. Results

1) Estimation of Observation Noise: Table III reports
results for T = 5s at the value of n = n̂ that maximizes AIC.
As expected, ego trajectories exhibit much lower observation
noise than vehicle trajectories in all datasets. The agent
trajectories in A1 are significantly noisier than in A2 and
WO. WO provides data with the least estimated observation
noise for vehicle trajectories due to its offline tracking
algorithm [3].

2) Model Complexity and Fit Error: Figure 4 shows Box-
plots for the longitudinal and lateral fit error for vehicle
trajectory samples with T ∈ [3s, 5s, 8s]. Figure 5 presents
the fit error for cyclist and pedestrian trajectories with the
same time horizons. We indicate the best model complexity
according to AIC and BIC. Table IV gives the numerical
results for both ego and agent trajectories at the model
complexity n = n̂ that maximizes AIC.

Figure 4, Figure 5 and Table IV clearly show that the
longer trajectories warrant higher model complexities for
their representation, but also that the benefits of higher n
are diminishing beyond an optimal model n̂ as indicated by
AIC or BIC. Trajectories of various object classes require



Fig. 4. The longitudinal (left) and lateral (right) fit error of models for vehicle trajectories in A1, A2 and WO with T ∈ [3s, 5s, 8s]. ”A, B” denote the
model complexity n = n̂ that maximizes AIC and BIC, respectively. The upper whisker denotes the 99.9% percentile.

Fig. 5. The fit error of models for cyclist (left) and pedestrian (right) trajectories in A2 and WO with T ∈ [3s, 5s, 8s]. ”A, B” denote the model complexity
n = n̂ that maximizes AIC and BIC, respectively. The upper whisker denotes the 99.9% percentile.

similar n̂ according to AIC or BIC in one dataset. Overall,
we see how linear models of moderate complexity can
represent trajectories with very high fidelity. E.g., the 6th

degree polynomial can approximate the 8-seconds vehicle
trajectories with 3.7cm longitudinal and 1.6cm lateral AFE in
WO. However, we also observe large deviations (> 1m). In-
specting these samples, we find they correspond to physically
implausible measurements due to timing jitter or tracking
loss that are not excluded by the RTS-Smoother. We visualize
several outliers and random examples from 3 datasets in the
appendix of our preprint [28].

3) Fit Error vs. total Displacement Error: Let us compare
the price we pay for the bias introduced by our basis func-
tions to the associated benefits in computational efficiency.

Figure 6 compares the fit error of our linear trajectory

models to the total displacement error over predicted vehicle
trajectories of state-of-the-art prediction methods with unbi-
ased sequence-based trajectory representation. This compar-
ison indicates to what extent a linear trajectory model may,
at the most, impact the performance of a prediction system.
We compare to minADEk, i.e. the minimum average dis-
placement error over top k most-likely predicted trajectories.
Note that both fit error and total displacement error are
dependent on the observation noise level as visualized in
Figure 1. If the observation noise level is low, as in WO, the
representation error of a linear trajectory formulation, upper
bounded by fit error, is negligible in the prediction task.
It is still significantly lower than the displacement error of
predictions in datasets, where the noise level is likely higher



TABLE III
ESTIMATED OBSERVATION NOISE FOR T = 5S AT n̂ MAXIMIZING AIC

Datasets A1 A2 WO

θego
σdiag [m] 0.024 0.012 0.008
σcov [m2] 2e-4 3e-6 -1e-7

θagent

vehicle

σα [rad] 1e-3 6e-4 3e-4
σc [m] 0.161 0.044 0.017

σr [m]
r = 10m, 20m, 40m

0.128 0.055 0.019
0.176 0.062 0.027
0.246 0.085 0.042

θagent

cyclist

σα [rad] - 2e-4 3e-4
σc [m] - 0.027 0.027

σr [m]
r = 10m, 20m, 40m

- 0.014 0.010
- 0.022 0.015
- 0.039 0.026

θagent

pedestrian

σα [rad] - 3e-4 2e-5
σc [m] - 0.018 0.015

σr [m]
r = 10m, 20m, 40m

- 0.007 4e-4
- 0.010 6e-4
- 0.017 0.001

TABLE IV
FIT ERROR OF EGO AND AGENT TRAJECTORIES [M]

(LON. LAT.)

T [s] Dataset
A1 A2 WO

ego

3
n̂ 3 5 4

AFE 0.022 0.002 0.004 0.001 0.004 0.001
99.9% 0.173 0.120 0.094 0.012 0.066 0.021

5
n̂ 5 6 6

AFE 0.022 0.004 0.007 0.002 0.005 0.002
99.9% 0.157 0.111 0.143 0.030 0.071 0.025

8
n̂ - 7 7

AFE - 0.019 0.006 0.013 0.004
99.9% - 0.251 0.090 0.114 0.069

agent
vehicle

3
n̂ 2 5 4

AFE 0.185 0.060 0.019 0.005 0.016 0.005
99.9% 1.753 0.835 0.312 0.114 0.359 0.056

5
n̂ 3 5 5

AFE 0.191 0.065 0.051 0.016 0.022 0.008
99.9% 1.774 0.848 0.735 0.284 0.408 0.090

8
n̂ - 5 6

AFE - 0.093 0.033 0.037 0.016
99.9% - 1.115 0.461 0.483 0.186

agent
cyclist

3
n̂ - 5 3

AFE - 0.008 0.004 0.025 0.016
99.9% - 0.098 0.054 0.179 0.130

5
n̂ - 5 5

AFE - 0.022 0.016 0.025 0.016
99.9% - 0.216 0.183 0.174 0.123

8
n̂ - 5 6

AFE - 0.042 0.040 0.031 0.028
99.9% - 0.364 0.358 0.217 0.242

agent
pedestrian

3
n̂ - 5 3

AFE - 0.005 0.004 0.011 0.009
99.9% - 0.058 0.046 0.091 0.070

5
n̂ - 5 5

AFE - 0.012 0.012 0.011 0.009
99.9% - 0.135 0.126 0.086 0.066

8
n̂ - 5 6

AFE - 0.023 0.026 0.016 0.012
99.9% - 0.257 0.255 0.133 0.108

n̂ denotes the best polynomial degree according to AIC. 99.9%
means the 99.9 percentile of the fit error.

such as A1. If a prediction method can perfectly predict the
parameters of future trajectories, its total displacement error
will be close to the fit error of polynomials.

On the other hand, we deem the computational benefits

of linear models large. For n = 5, a trajectory is specified
completely by six kinematic constraints (position, velocity
and acceleration) at start and end points. Since three kine-
matic constraints at the start can be estimated entirely from
past observation, the prediction problem is in fact reduced
to predicting the kinematics at the end point. Hence, 50% of
the accuracy of trajectory prediction is due to exact tracking
of initial kinematics and 50% is due to accurate prediction
of kinematics at the end of the prediction horizon, only.

Fig. 6. The average fit error AFE of polynomials at n̂ maximizing AIC
and the average displacement error minADEk (k = 6) of Wayformer[10]
and MultiPath++[12] for vehicle trajectories with T ∈ [3s, 5s, 8s]. Latest
prediction results can be found at [29], [30].

VII. CONCLUSION

Object trajectories for various object classes can be mod-
elled with high fidelity by simple linear combinations of
polynomial basis functions. Independent of any particular
prediction method, we have characterized the trade-off be-
tween model complexity and fit error by an empirical analy-
sis of several large public datasets. Using an Empirical Bayes
approach, we have estimated models for observation noise
and prior distributions over model parameters. The estimated
observation noise parameters can (and should) be considered
when training trajectory prediction models with a Gaussian
Log-Likelihood loss, particularly when combining different
datasets. The prior parameters can inform the motion models
of trajectory tracking and filtering models [6] or regularize
trajectory prediction models.

It is important to note that the fit error introduced by a
linear formulation is small compared to the total displace-
ment errors of current state-of-the-art prediction models. This
indicates that the inherent bias in linear models is much
smaller than the epistemic uncertainty in the prediction task.
We further suggest using linear trajectory models in future
works with inherent mathematical benefits.
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