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Abstract— We propose a trajectory planning approach for
autonomous vehicles in highly dynamic traffic scenarios, using
elastic bands to follow the observed trajectories of other
vehicles. The focus of this paper is on the initialization of the
elastic band. The proposed method does not rely on a map. We
tested our method using recorded urban traffic data. The results
show that the presented approach is valid and the proposed
initialization process is clearly superior to naive initialization.

I. INTRODUCTION

Traditionally, path and trajectory planning algorithms for
autonomous cars rely heavily on high precision maps. Even
though map providers have been coming up with high
precision maps recently, creating these high precision maps
is still a tedious task and those maps are not available
everywhere. The given map may be outdated, temporarily
invalid due to accidents, construction sites or road work.
Weather conditions may influence the drivability of roads
or the code of conduct regarding e.g. speed limits or using
specific lanes. Also, a source for global localization may be
temporarily unavailable, making it impossible the correlate
the vehicle’s position with the map.

The approach presented in this paper aims at solving the
problem of (temporarily) not having a valid map. It is based
on a simple but effective strategy: following other cars and
imitating their behavior. This can be seen as some kind of
swarm behavior, such as ants following the pheromone tracks
of their fellow species. Especially in the near future, where
there will be a mixed traffic of (mostly) driver-operated and
autonomous vehicles. Autonomous cars should make use of
the exceptional abilities of humans to perceive uncommon
environments and adopt to unforeseen events. But also in an
all autonomous environment, there may be other cars with a
valid map or a superior sensor setup.

The concept of elastic bands for trajectory optimization
is perfectly suited for the task of following other vehicles’
trajectories. They enable planning in continuous space and
are still efficient compared to searching a huge discrete state
space. On the other hand, they can only find a local optimum,
which can be mitigated by providing a good estimate for
initialization. This publication focuses on this process of
initializing the elastic band in more complicated scenarios.
Figure 1 gives an overview of the proposed process of
generating a trajectory.

Section II gives a brief overview of approaches for path
planning, especially ones using elastic bands. Section III
describes briefly the concept of timed elastic band and
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Fig. 1: Overview of the proposed trajectory planning. (a) A target vehicle
(dark blue) is chosen. The ego vehicle (gray) is supposed to follow the
target’s trajectory. (b) An initial elastic band is generated based on the
target’s trajectory. (c) The trajectory is generated by optimizing the initial
band. The optimization is taking into account dynamic obstacles and attracts
the band to all observed vehicles’ trajectories.

introduces algorithms for initializing the band based on
the trajectories of other vehicles. Experimental results are
presented in IV, followed by a conclusion in V.

II. RELATED WORK

Many planning algorithms for road vehicles require maps,
as e.g. in [2]. For lane changes and other maneuvers they
often use state machines or other hand-crafted, rule based
solutions. Often, those hand-crafted rules are too conserva-
tive to work well in certain real-world scenarios, because
of high traffic dynamics, small distances between vehicles,
or because of occluded areas. One example for a planning
approach which relies on maps and which is based on the
A* planner has been described in [16]. An extension to A*
planners, the ARA* planner has been described in [7].

An example for A* planners with applications to free form
navigation is given by [8]. In the work of [5] the authors
present a solution to overcome the separation between route
based and trajectory planning while introducing a concept
called pseudo-homology. A key focus of their work has been
put on the question of how to yield, follow or overtake other
agents. In [14] an idea was presented how to create driveable
paths by observing other objects using lidar sensors. Another
approach which takes advantage of potential fields and MPC
to plan around obstacles has been presented in [10] Other
popular approaches to plan in dynamic environments are
spatiotemporal state lattices [17].

The trajectory planning approach described in this paper
uses the concept of stable timed elastic bands with loose
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ends (STEBLE) proposed in [15]. It largely builds on the
timed elastic band (TEB) framework introduced by Rösman
et. al. [11] and objective functions implemented in the
ROS package teb local planner [1]. TEB extends the original
elastic band approach, introduced by Quinlan et. al. [9], by
augmenting the elastic band with a sequence of time inter-
vals. This enables formulating constraints related to temporal
aspects. In [12] Rösman et. al. propose an extension to avoid
local minima by planning multiple topologically distinctive
trajectories simultaneously and [13] combines timed elastic
bands with MPC. Algorithms which involve timed elastic
bands have been applied recently for collision avoidance in
Keller et al. [6] as well as for urban autonomous driving [4].

III. STABLE TIMED ELASTIC BANDS WITH LOOSE ENDS

The approach described in this paper relies on stable timed
elastic bands with loose ends (STEBLE) to generate locally
optimal trajectories. The concept is presented and described
in detail in [15]. The main idea behind STEBLE is, that the
time between the poses is constant. As a result the band
length itself is fixed regarding the temporal aspect. A fixed
time interval is defined between a fixed number of spatial
configurations. This results in a much smaller search space
for (locally) optimal solutions. Another major aspect is, that
the last configuration of the band (i.e. the goal) is not set
to a fixed position and orientation during the optimization
process. A spatially fixed goal configuration would imply the
unnecessary constraint of being at a specific time at a specific
position. Instead, to follow other cars it is sufficient to be
somewhere on their trajectory at a given time. STEBLE uses
an objective function that attracts the band to other vehicles’
trajectories to achieve such a behaviour.

The elastic band itself is described as a sequence
Q = {Xi}ni=0 of spatial robot configurations in a three-
dimensional workspace with xi = (xi, yi, βi) (two coor-
dinates for the position on a plane plus one angle for the
orientation). The number of configurations n is set initially
and does not change during the optimization. Section III-C
describes how the initial number and values of configurations
are determined in detail. The first configuration - i.e. the start
- is always fixed during the optimization process. That is
because the planned trajectory must always start at the ego
vehicle’s current position and orientation.

Furthermore, a time interval ∆T is chosen, denoting
the time needed by the ego vehicle to transit from one
configuration xi to another configuration xi+1. ∆T is fixed
for one elastic band and has the same value for all transitions.
Therefore the total duration - i.e. the length regarding the
temporal aspect - of the resulting trajectory is determined at
initialization.

The resulting timed elastic band B = (Q,∆T ) is then
optimized in terms of spatial configurations with regard
to a weighted multi-objective function f(B), which is the
weighted sum of components fk described in the following.
This optimization problem is represented as a hyper-graph
(explained in detail in [11]) and solved using the g2o frame-
work [3].

Fig. 2: Representation of the elastic band optimization problem as hyper-
graph. Configurations of the band are represented as nodes (circles). The
components of the objective function are represented as unary, binary
or ternary edges (squares). The first configuration is fixed during the
optimization process.

A. Objective Functions

As stated above, the final timed elastic band is optimized
in terms of spatial configurations. At the core of this opti-
mization process is the weighted multi-objective function (1).
It calculates the weighted sum of several objective functions
fk with corresponding weights γk.

f(B) =
∑
k

γkfk(B) (1)

All objective functions used for the experiments below are
listed in Table I.

Each function fk represents an objective or a constraint
that is associated with one or more consecutive configura-
tions xi. The constraints are formulated as objectives in terms
of a “piecewise continuous, differentiable cost function that
penalizes the violation of a constraint” [11].

Although in the approach used in this paper only the
spatial configurations are optimized, it is still possible to
formulate constraints regarding dynamic aspects, such as
velocity, acceleration or moving obstacles, due to the time
interval ∆T associated with the transition between two
configurations.

Several components fk used in this paper were proposed
by Rösman et. al. in [11], i.e., restrictions for maximum
translational velocity, maximum translational and rotational
acceleration and non-holonomic kinematics. Also, existing
functions from the implementation in [1] were used to
penalize backward-driving, falling below the minimum turn-
ing radius and maintaining a specific velocity at the start
and goal configuration. For the STEBLE apprach presented
in [15] more objective functions regarding the centripetal
acceleration, dynamic obstacles and following other vehicles’
trajectories were added. The objective functions mentioned
above are described in detail in the respective papers.

For the experiments described in this paper the objective
function regarding dynamic obstacles was modified, so that
for the prediction of dynamic obstacles the rotational velocity
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around the vertical axis (yaw rate) is taken into account (in
addition to the linear velocity).

Furthermore, objective functions regarding the wanted
velocity and acceleration were added. These are the same
as the corresponding functions for maximum acceleration,
but with lower thresholds and weights, as they represent
constraints for comfortable driving and not the vehicle limits.

B. Selecting The Target Vehicle

A fundamental decision when following other vehicles is
which one to follow. In the scope of this paper the general
idea is to choose the vehicle whose state resembles most the
current state of ego vehicle. Three criteria were chosen, i.e.
distance, orientation, velocity. Also, the time we were already
following a vehicle in previous iterations is considered. This
discourages frequent changes of the target vehicle. Instead
we evaluate the current state of observed vehicles and the
previous state si on their respective trajectories closest to
the current position of the ego vehicle. For this a tracking
over time was implemented.

The input data for the trajectory planning module includes
position, orientation, linear and angular velocity and accel-
eration of the ego vehicle as well as objects surrounding the
ego vehicle. We only select objects classified as cars as the
target vehicle. Each object oid is identified over consecutive
iterations of the planning module by a unique id.

Based on their id, the state si = (ti,yi, vi) consisting of
the timestamp ti, the configuration yi = (xi, yi, βi) (two-
dimensional position and orientation, resembling the config-
urations xi on the elastic band), and the velocity vi is tracked
over time and stored for each object oid observed. While the
velocity vi can be calculated from the configurations and
time stamps, it is stored for convenience. For each oid a
sequence of states Sid = {si}ni=0 is maintained. During the
selection process, for each obstacle the state si closest to
the current position of the ego vehicle is evaluated. For each
of those closest states the following evaluation variables are
calculated:
dist The euclidean distance from the current ego vehicle

position. The distance is normalized in the range
[0, 1] in a way that the state closest to the ego vehicle
is 1 and the one farthest away is 0.

orient The angular difference to the ego vehicle orientation.
Normalized in the range [0, 1], where matching ori-
entations are 1 and opposite orientations are 0.

vel The correspondence with the current ego vehicle
velocity. Similar to distance, velocity is normalized
in the range [0, 1] in a way that the (linear) velocity
closest to the ego vehicle is 1 and the one with the
largest absolute difference is 0.

trust The trust variable measures the time a vehicle was
followed in previous iterations. For each second an
object with a specific id is followed, the trust value
is incremented by 0.1. For each second the object is
not followed, the trust value is decremented by 0.1.
The value is clamped in the range [0, 1].

For each object oid a weighted sum Ωid is calculated based
on the evaluation variables:

Ωid = ω0∗distid+ω1∗orientid+ω2∗velid+ω3∗trustid (2)

All observed objects oid are then stored in a priority
list, sorted by their according Ωid. The object with the
highest priority, i.e. the highest value Ωid, is then chosen
as target vehicle otarget for the process of initializing the
band, described below. If for some reason no trajectory can
be generated for otarget, the next object in the priority list
is chosen as target.

C. Initializing the Band

One of the most important steps, when using elastic bands
for optimizing trajectories, is the initialization of the band,
i.e. providing an initial band Binit = (Qinit,∆T ), with
Qinit consisting of a sequence of initial configurations xi.
This is mostly due to the property of elastic bands, to find
only a local optimum. Thus, the initialization determines
some properties of the optimized trajectory, e.g. if a specific
obstacle is passed on the left or right. Furthermore, a
initialization with a good estimate regarding the dynamic
constraints for velocity and acceleration, reduces the number
of iterations necessary to converge to the local optima. This
is important, since the number of iterations is limited in the
approach evaluated in this paper (compare Section III-D).

Since the general idea of the presented approach is to
follow other vehicles’ trajectories, an obvious choice for
an initial sequence of configurations is the trajectory of
the vehicle chosen as target vehicle (compare Section III-
B). This trajectory has a high probability of being close to
the current ego vehicle configuration x0 - especially if we
were following that vehicle for some time - but there is no
guarantee on the distance. As the elastic band is required
to start at exactly at x0, a procedure to generate an initial
band, smoothly transitioning from x0 to the target vehicles’
trajectory - in the following called target trajectory Starget
- is described. An overview of this process is shown in
Figure 3.

Filtering the Target Trajectory: The target trajectory
Starget of the target vehicle otarget (i.e. a sequence of states
si with respective configurations yi, time stamps ti, and
velocities vi) can be easily obtained, as it is maintained
for the process of selecting the target vehicle (compare
Section III-B). The problem is to identify, which states to
use. States which are not in the direction of the orientation
of x0 should be omitted, but only if they are within a certain
distance. If they are far away, it is desirable for the ego
vehicle to turn and reach the target vehicles’ trajectory as
soon as possible. On the other hand, the vehicle should not
be required to turn away from the target trajectory or drive
in loops, but instead prefer a direct transition, i.e. a simple
or S-shaped curve in the direction of the target (compare
Figure 5). Thus, to determine which states of Starget are
feasible, the following algorithm is used:
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Objective Function Weight Threshold Description

non-holonomic
kinetics 1000 n/a Ensures that all configurations on the band follow the principle of non-holonomic

kinetics. Each pair of adjacent configurations xi and xi+1 is required to be on a
common arc segment of constant curvature. These functions penalize the deviation of the
position and orientation from such an arc segment, as well as the radius of the arc
segment being below the specified threshold.

min turning radius 1000 4 m

forward driving 1000 n/a

Enforces a “only forward driving” policy for the whole band. For each pair of consecutive
configurations xi and xi+1, it is required that the second pose is “in front” of the first. If
the dot product of the vector pointing from the location of xi to xi+1 and the orientation
vector of xi is negative, the return value is the squared dot product. Otherwise it is zero.

avoid obstacles 200 2 m

Repels the band from obstacles closer than the specified threshold. The function is
associated with each configuration xi. Takes size of the obstacles (and ego vehicle) into
account by representing them as line segments with associated radius (compare [15]). For
each obstacle closer to the ego vehicle than the threshold distance, the amount of the
euclidean distance falling below the threshold is squared and summed up as return value.
For dynamic obstacles the location of the obstacle is predicted assuming constant
velocity. The specific interval for which the obstacle has to be predicted for each
configuration xi can be calculated by multiplying the corresponding index i with ∆T .

max velocity 100 determined on
initialization

Keeps the maximum velocity on the band below the specified threshold. The function is
associated with each pair of consecutive configurations xi and xi+1. The return value is
the amount of the velocity exceeding the threshold, calculated from the two
configurations and ∆T . The threshold in the experiments below was set to 110 % of the
maximum velocity value of the initial elastic band (compare Section III-C).

max centripetal
acceleration 100 2 m/s2 Keeps the respective maximum acceleration on the band below the specified threshold.

The respective functions are associated with each triple of consecutive configurations xi,
xi+1 and xi+2. The return value is the amount of the respective acceleration exceeding
the threshold, calculated from the three spatial configurations and ∆T . Additionally, the
first and last pair of configurations on the whole band are associated with a similar
function based on set start and goal velocity.

max rotational
acceleration 100 2 m/s2

max longitudinal
acceleration 50 2 m/s2

follow trajectories 40 n/a

Attracts the band to the trajectories of other vehicles. This objective is associated with
each configuration xi. The trajectories are represented by a set of line segments, stored in
an R-tree for faster lookup. The return value is the euclidean distance between xi and the
closest line segment.

wanted velocity 10 determined on
initialization

Similar to the “max velocity” constraint, but penalizes deviation from the threshold in
both directions (lower and higher). The value of the threshold is determined dynamically
when the band is initialized, as it is used to influence the follow distance.

wanted centripetal
acceleration 2 0 m/s2

Same as the corresponding “max acceleration” functions, but with different thresholds
and weights.wanted rotational

acceleration 2 0 m/s2

wanted longitudinal
acceleration 1 0 m/s2

TABLE I: OBJECTIVE FUNCTIONS

• Find state si which is closest to the current ego vehicle
position and prune all states with smaller index (i.e.
older) from the trajectory.

• For each remaining state si = (ti,yi, vi):
– Get the maximum of the ego vehicle velocity and the

velocity in state si: vmax = max(vego, vi)
– Calculate the radius r of a minimum turning circle

with centripetal acceleration amax with respect to
vmax: r =

v2max

amax
.

– Construct a minimum turning circle Cx with radius
r (from previous step) and centre point c (compare
Figure 4). The position of c is chosen, so that the
vector −→xc from the position of x0 to c has a length
of r (i.e. x0 is on the perimeter of the circle) and is
perpendicular to the orientation vector −→ox of x0.
This results in two possible options for c: cl and cr,
either orthogonal left or right of x0 with regard to
the orientation vector −→ox.
To determine which of cl and cr to use, another vector
is needed: −→xy, pointing from the position of x0 the

position of yi. With −→ox = (a0, a1) and −→xy = (b0, b1),
the sign of dx = a0 · b1− a1 · v0 determines if y (the
point in front of yi) is to the left or right of x0 with
regard to −→ox.
If d > 0, y is left of x0 and c = cl is chosen
accordingly, otherwise c = cr. The circle Cx

– Construct a circle Cy , similar to Cx, but with yi
on the circle perimeter and dy determining which of
center cl and cr to use (orthogonal left or right of yi
in distance r with respect to orientation −→oy), based
on the vector −→yx = −−→xy, pointing from the position
of yi to the position of x0 (compare Figure 4).

– If the two circles Cx and Cy do intersect, the con-
figuration yi is not feasible, i.e. it cannot be reached
with centripetal acceleration below the given amax
at the given velocity, without turning away from the
target trajectory at some point. If yi is not feasible,
prune it from the trajectory and proceed with the next
state si+1. If yi is feasible, the loop can be left and
all remaining states used for the initial elastic band.
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Fig. 3: Overview of the initialization of the elastic band. (a) depicts the
target (blue) and the according sequence of tracked states. The ego vehicle
is gray. (b) All states before the one closest to the ego vehicle and within
180◦ of the ego vehicles orientation are discarded. (c) For each remaining
state two minimum turning circles are constructed. One is attached to the
ego vehicle’s position (gray) and one to the respective state (blue). All states
before the first one, where the circles do not intersect, are discarded. (d) An
additional state is predicted close to the ego vehicle and a cubic spline is
constructed, using the remaining states as support points. (e) The resulting
spline is sampled to generate the configurations of the initial band.

Some examples for the resulting circles are depicted in
Figure 5. The result of the process of selecting feasible states
from the target trajectory Starget is a sequence Sfeasible,
which consists of all states si with index larger than some
state scf . scf is the first state of Starget (starting from the
oldest one) which is feasible according to the algorithm
stated above and has a larger index than the state closest
to the ego vehicle.

If the resulting trajectory Sfeasible has less then two
configurations, it is rejected, as at least two configurations
are needed for the subsequent steps. In this case, the next
object oid in the priority list is chosen as otarget (compare
Section III-B) and the process of filtering the target trajectory
is repeated.

Sampling With Constant Time Intervals: As the elastic
band B = (Q,∆T ) is defined by the constant time interval
∆T between adjacent configurations, the initial elastic band
Binit should reflect this property. The filtered trajectory
Sfeasible generated in the previous step does not necessarily
guarantee this, as the sample rate of the states of the observed
objects may be lower due to constraints of the sensors
or post-processing steps. Additionally, the distance between
the first configuration x0 to the first feasible configuration
y0 of Sfeasible is variable, i.e. it is highly probable that
the according (estimated) time interval ∆T0 does not equal

x0

yi

−→xy

−→ox

−→oy

Cx

Cy

r

r

cl

cr

cl

cr

Fig. 4: In the process of filtering the target trajectory Starget, two minimum
turning circles Cx and Cy are constructed and placed to the left or right
of the respective configuration, to evaluate if the configuration yi can be
reached from the configuration x0 without a maneuver requiring to recede
from the target configuration.

∆T . For those reasons, a cubic spline (satisfying continuity
requirements up to the second derivative) is constructed for
each of the two spatial dimensions over time, using the
respective values from x0 and yi ∈ Sfeasible as support
points, as described in the following.

In a first step, the configuration x1 is estimated by
predicting x0 by ∆T based on the current linear and angular
velocity of the ego vehicle. This additional configuration
provides some more stability to the constructed spline, as
the uncertainty in the measurements of the configurations yi
may introduce some oscillation.

The next step is to estimate the time interval ∆T1 be-
tween x1 and y0. It is derived from the estimated travel-
distance s and the average velocity va between those two
configurations. While va can be calculated directly from the
current velocity of the ego vehicle and the respective value
stored in Sfeasible, s is estimated by the arc length of a
circular segment connecting x1 and y0. The circular segment
is defined by the chord length c, which is the euclidean
distance between the positions of the two configurations, and
the angle difference ∆α between the respective orientations.
s, i.e. the arc length of the circular segment, can be calculated
as follows:

s =

∣∣∣∣∣ ∆α · c
(2 ∗ sin(∆α

2 ))

∣∣∣∣∣ (3)

With this, ∆T1 = s ∗ va can be calculated. According to
∆T1 (and ∆T0 = ∆T between x0 and x1) the time stamps
ti corresponding to the respective states si ∈ Sfeasible are
updated, so that they are relative to the current time, i.e. the
start time of the elastic band.

The sequence of pairs of configurations and time stamps
{(x0, 0), (x1,∆T ), (y0, t0), . . . , (yn, tn)} is then used to
construct two cubic splines Sx and Sy (one for each spatial
dimension). The support points consist of the coordinate
in the respective dimension and the according time stamp.
As stated above, the splines are continuous in the first and
second derivative by construction.
Binit is then obtained by sampling a number of initial
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Fig. 5: Examples for the evaluation of feasible target configurations. The
orientation vector−→ox and the minimum turning circle Cx are shown in black,
the target configurations’ −→oy and Cy in blue, respectively. The assumed
trajectory transitioning between the configurations is red.
If the two circles do not intersect, a direct transition is possible, i.e.
without receding from the target ((a)-(d)). If the circles intersect ((e),(f)), it
would be required to initially move away from the target, so the respective
configurations are omitted from the filtered target trajectory. (g) depicts a
rare case, where the circles intersect, but a direct transition is possible. This
is accepted in favor of a more simple algorithm.
On the other hand, (h) depicts a case, where the circles do not intersect,
but receding from the target would be required (if following the perimeter
of Cx). This is not a problem, since for all those cases a circle C′x (dotted
gray) on the opposite side of −→ox can be constructed, which also does not
intersect with Cy . When following the perimeter of C′x, a direct transition
is possible.

configurations xi = (xi, yi, βi) from the splines Sx and
Sy with a step size of ∆T . The values for xi and yi are
the values of the splines at the respective time. The value
for βi can be calculated from the first derivatives of the
splines, as those can be interpreted as the components of the
respective orientation vector. The number of configurations
sampled can be limited (compare Section III-D) to reduce
the computational complexity of the optimization.

D. Parameters, Thresholds and Weights

There are two major parameters influencing the computa-
tional complexity of the optimization problem and thus the
run time of the algorithm: The number of configurations
n and the number of iterations for optimizing the graph
(compare [3]). The number of configurations is fixed during
optimization and is determined at initialization by the value
for ∆T and the maximum overall duration of the band. In
the context of this paper ∆T was set to 0.2 s. This is the
maximum value, which still guarantees that no object can
“slip” between two consecutive configurations at maximum
velocity in an urban environment (taking into account a
threshold of 2 m for minimum obstacle separation). The
resulting separation of two configurations at 60 km/h is
∼ 3.3 m. The maximal duration Tmax of the elastic band
was set to 5 s which still enables foresight regarding evasive
maneuvers. This results in a maximum of n = 25 configu-
rations per elastic band. Due to limitation of computational

power, the number of iterations for the optimization process
was set to 50, although a higher value would be preferable.

All thresholds and weights used for the objective functions
are given in table I. The weights are reflecting the priority
of the objectives. Kinematic constraints have the highest
priority, since it makes no sense to generate trajectories, the
ego vehicle cannot follow. Obviously, avoiding obstacles also
has a high priority, but in favor of a drivable trajectory it
can be accepted to violate the safety margin. The maximum
centripetal and rotational acceleration are weighted higher
then the longitudinal acceleration, i.e. braking is preferred
for obstacle avoidance. Objectives regarding the wanted
acceleration and velocity have lower priority, since they can
be regarded as comfort features. The weight for following
a trajectory can be adjusted to control how strictly other
vehicles’ trajectories are followed.

The thresholds for the minimal turning radius and maxi-
mum acceleration are directly related to the vehicle dynamic
and acceptable comfort for passengers, respectively. The
threshold for obstacle avoidance was set to 2 m, reasoning on
this can be found in [15]. Thresholds for wanted acceleration
were set to 0 m/s2, as we want to prevent any acceleration,
when not necessary.

Two of the thresholds are not set to static values, but are
determined during the initialization process: the maximum
velocity vmax and the wanted velocity vwanted. They are
set after the initial band Binit is constructed. In most cases
the maximum velocity is regulated by traffic rules - in
urban scenarios it is usually much lower than the maximum
velocity the ego vehicle can reach. In the presented approach
we do not want to make any assumptions on the traffic rules,
but instead adapt to the behaviour of other drivers. Therefore
the threshold for maximum velocity is set relative to the
velocities on the initial band Binit, which incorporates the
velocity of the target vehicle. In the experiments below, vmax
was set to 110% of the maximum velocity on Binit.

The other threshold determined during the initialization -
the wanted velocity vwanted - is set based on the current
velocity vtarget of the target otarget and the distance d
between the ego vehicle and otarget. It directly influences
the velocity on the optimized band, so it is used to catch
up to otarget if d is larger than a specified follow-distance
dfollow, and fall back if d is smaller, respectively. In the
experiments below, vwanted is calculated according to the
following equations:

dfollow = max(5 m, vego · 1 s)
voffset = 0.1 s−1 · (d− dfollow)

vwanted = min(vmax, vtarget + voffset)

(4)

dfollow is set to the amount of the current velocity of
the ego vehicle (in m/s). This corresponds to following the
target with a temporal distance of 1 s. Also, dfollow cannot
fall below a specified minimum follow-distance of 5 m. The
value of vwanted is limited from above, so that it cannot
exceed vmax.
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IV. EXPERIMENTAL RESULTS

Experiments on the general validity of the approach de-
scribed in this publication were conducted in a simulation
environment combined with live data. While the information
on observed objects is taken from recorded data of the
autonomous vehicle “MadeInGermany”, the trajectory of the
ego vehicle was simulated.

The examined data set consists of multiple transits of the
roundabout “Großer Stern” in the urban center of Berlin,
Germany. It has a total length of ca. 39 minutes. An example
of the observed objects is shown in Figure 6.

Fig. 6: A typical scene of the object data recorded at “Großer Stern”, Berlin.
The ego vehicle is white. Objects classified as car are shown in orange, their
trajectories red. Other objects are colored in yellow.

The trajectory of the ego vehicle was simulated assuming
that the car follows perfectly the planned trajectory. The pose
of the simulated ego vehicle was reset to the real vehicle’s
pose, if the respective positions deviate more then 20 m.
This was done so that the simulated ego vehicle is always
close to the center of observation.

In the whole data set an average of 6.3 other vehicles were
observed. An average of 2.8 objects allowed the generation
of an initial trajectory, i.e. was a valid target. In 80.1% of
the iterations of the trajectory planning module at least one
target was available. The absence of valid targets occurred
mostly when the real car was doing a U-turn to reenter the
roundabout (what no other drivers where doing) and when
standing in the front row at a traffic light.

Table II shows the results for six transits of the roundabout,
where the simulated trajectory was not resetted (i.e. the
simulated vehicle was always within a range of 20 m of
the real vehicle) and there was always at least one valid
target to follow available. For measuring the quality of the
trajectories, three values are most important: the longitudinal
acceleration, the lateral acceleration, and the distance to
obstacles.

The results show that the values for the simulated vehicle
and the human driven real vehicle are quite comparable.
On the other hand, the thresholds specified in the respective
objective functions (2 m/s2 maximum acceleration and 2 m
distance to obstacles) are exceeded in many cases. This
is expected to some degree, as the objective functions do
not represent hard constraints, but only values above the
thresholds are penalized. Nonetheless, there are some very
high values for the longitudinal acceleration in scenario 1
and 6. This correlates with very low minimal distances to
obstacles in those scenarios. The reason is that the elastic

band gets stuck in a local minimum between two observed
vehicles (compare Figure 7).

This is an inherent problem of using fixed time intervals
between the configurations and a fixed number of config-
urations. In the whole data set about 2.1% of the gener-
ated trajectories have maximum acceleration or minimum
distances exceeding the respective thresholds by more than
150%, which is a clear sign of configurations stuck during
optimization.

Fig. 7: Example of the elastic band being stuck in a local minimum. Two
objects enclosing the band at both sides are shown at two different predicted
states. The corresponding configurations of the elastic band are highlighted
with a circle in the respective color. They do not move during further
iterations of the optimization, as the cost function repelling them from
the obstacles and the cost functions attracting them to each other (due to
max acceleration and velocity) are in balance. The stuck configurations
prevent the trajectory from slowing down to avoid the obstacles, as for such
a maneuver it would be necessary to pull more configurations closer to the
ego vehicle.

To examine the quality of the proposed initialization
process, it was compared to initializing the band with config-
urations sampled on a straight line to the target with linear
velocity adjustment. Figure 8 shows that the average dis-
tance, the configurations were moved during the optimization
process, is clearly reduced, i.e. the final state of the band
is reached with less iterations. On the other hand, when
taking only the longitudinal position change into account (i.e.
the optimization of the velocity), the simple initialization
is closer to the final state. This is due to the proposed
initialization taking into account the velocity of the target
along its trajectory, which is then smoothed out again.

Fig. 8: Comparison of the proposed initialization (blue graphs) with a simple
initialization sampled on a straight line to the target with linear velocity
adjustment (red graphs). The graphs represent the average distance each
configuration ci was moved during the optimization process. The longitu-
dinal and lateral distance were measured with respect to the orientation of
the respective initial configuration.

V. CONCLUSIONS

The experimental results show that the approach of fol-
lowing other cars using elastic bands is valid to compensate
for temporary unavailable maps. The proposed initialization
process is superior to a naive initialization, as significantly
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Scenario cars observed
(max/min/avg)

valid targets
(max/min/avg) target changes velocity [m

s
]

(max/min/avg)
long. acc [ m

s2
]

(max/avg)
lat. acc [ m

s2
]

(max/avg)
dist to obst. [m]
(max/min/avg)

1 18 / 6 / 11.2 10 / 1 / 5.5 2 13.9 / 0.0 / 8.8 4.3 / 1.2 2.1 / 0.8 10.4 / 0.2 / 7.0

human 10.8 / 0.0 / 7.5 3.2 / 0.7 2.8 / 0.7 11.4 / 1.8 / 4.0

2 10 / 4 / 7.1 7 / 1 / 4.1 0 13.5 / 0.0 / 9.0 3.4 / 0.6 2.5 / 1.0 10.5 / 0.6 / 4.8

human 14.0 / 0.0 / 8.4 3.0 / 0.6 5.4 / 1.0 5.5 / 0.4 / 3.1

3 9 / 5 / 6.8 5 / 2 / 2.4 0 12.5 / 7.5 / 11.3 2.2 / 0.5 1.7 / 0.7 14.9 / 1.7 / 8.1

human 13.4 / 4.2 / 10.7 1.9 / 0.5 2.8 / 1.0 17.0 / 3.2 / 9.4

4 14 / 4 / 5.6 6 / 1 / 2.7 0 13.8 / 6.9 / 10.9 2.0 / 0.7 1.8 / 0.7 6.8 / 1.1 / 5.1

human 13.8 / 4.7 / 10.6 3.6 / 0.8 3.7 / 0.6 7.6 / 0.5 / 3.9

5 18 / 2 / 9.4 12 / 1 / 4.4 4 12.3 / 0.0 / 7.9 3.5 / 0.8 2.9 / 0.8 11.5 / 0.9 / 6.5

human 12.3 / 0.0 / 8.6 3.9 / 0.7 3.8 / 1.1 11.2 / 1.2 / 5.8

6 15 / 5 / 11.1 9 / 1 / 6.1 3 13.5 / 0.0 / 8.7 4.8 / 0.9 1.9 / 0.7 10.1 / 0.1 / 5.3

human 11.7 / 0.0 / 7.5 3.8 / 0.9 2.6 / 0.9 8.6 / 0.5 / 4.8

TABLE II: COMPARING GENERATED TRAJECTORIES TO HUMAN DRIVER TRAJECTORIES

less iterations are required to achieve a locally optimal
solution.

Nonetheless there are some shortcomings which need to be
addressed in future work. The concept of elastic bands does
not guarantee a collision free trajectory within the maximal
bounds for vehicle dynamics. This problem is even amplified
when using fixed time intervals, due to configurations stuck
in local minima during the optimization. This could be
mitigated to some degree by using more than one initial band
and hierarchically selecting a subset of the bands for further
optimization.

Also, more elaborated strategies for selecting the target
vehicle need to be developed. In this paper a rather simple
strategy was used, ignoring the global route or destination
of the ego vehicle. The destination of the observed vehicles
could be estimated or acquired with C2X communication.

Another important aspect is the prediction of other vehi-
cles’ trajectories. The naive approach of assuming constant
velocity or acceleration is often inaccurate in complex urban
scenarios. Obviously the prediction could be improved by
directly communicating planned trajectories between cars.
Alternatively better heuristics should be used, e.g. other
drivers are also following observed vehicles’ trajectories in
most scenarios.
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