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Abstract— In this paper we propose a trajectory planning
approach for autonomous vehicles in highly dynamic traffic
scenarios, capable of exploiting the observed trajectories of
other vehicles. For this purpose, we introduce a novel variant
of the timed elastic bands (TEB) approach by using fixed time
intervals and a flexible goal position. We tested our method
with a simulated merge-into-traffic scenario and compare it to
a reference TEB implementation with focus on the impact of
important parameters and the stability of planned trajectories.
The results show that our method is an improvement over TEB
in terms trajectory smoothness and stability.

I. INTRODUCTION

Most planning approaches for autonomous driving rely
heavily on accurate maps. However, there are many situ-
ations where the observed world mismatches the mapped
world. Other vehicle drivers may decide to not follow the
mapped lanes, because the pathway of roads has changed,
lane markings are missing, or because lanes are temporarily
blocked. In such scenarios, it is certainly safer to adopt the
ego trajectory to that of other vehicles nearby.

A simple and effective strategy is to follow other vehicles,
which are driving in the desired general direction. These
vehicles may be driving on an adjacent lane and our planning
goal is to merge into the lane defined by the other vehicles’
trajectories. Such merge-in maneuvers are very important and
complex in high density traffic, because the kinematics and
dynamics of the own and other vehicles have to be taken into
account. In the following, we mainly focus on this scenario
to keep the evaluation tractable.

In this paper, we utilize timed elastic bands since they
provide beneficial properties for our planning task: They
consider temporal aspects of the trajectory, generate plans
with respect to steering and velocity, and consider dynamic
constraints in addition to obstacles. All constraints must
be formulated as target function creating a huge set of
parameters, which need to be found and tuned. The actual
energy minimization adjusts all poses and time intervals
with respect to these functions. However, such a path is
unnecessarily restrictive. Usually, the exact point of lane
transition is irrelevant. We only require the goal pose to be
somewhere on the trajectory to be followed.

Therefore, we propose a modification to the timed elastic
band approach addressing this aspect while stabilizing the
generated paths. We evaluate some of the most influential
parameters based on the simulation of a merge into traffic
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scenario, as one of the most prominent maneuvers requiring
an adoption to other vehicles trajectories.

The sections of this paper are structured as follows:
Section II gives a brief overview of most common planning
approaches, Section III provides details about our planning
and control architecture. In Section IV we describe the nec-
essary parameters of the used timed elastic bands approach.
Important experimental results are presented in V, followed
by a conclusion in VI.

II. RELATED WORK

Most planning algorithms for self-driving vehicles are
either applied in unstructured environments, i.e., without
a map, or in structured areas with roads where maps are
usually available. Very prominent examples for path planning
algorithms come from the A* search family, as, e.g., ARA*
from Likhachev et. al for road vehicles, c.f. [10] or RRTs
from LaValle et al., c.f. [8].

Path planning approaches for autonomous vehicles often
take advantage of prerecorded maps, as for the CMU Boss
vehicle at the DARPA Grand Urban Challenge [17], as in the
work of Czerwionka et. al. [3], or as Wang et al., following
predefined routes [18]. In this case, the velocity on a given
trajectory was calculated in a second pass, with respect to
dynamic obstacles, as described in [4]. Heinrich et al. pro-
posed an ”approach for automated vehicle motion planning
systems that introduces the likelihood of an information gain
at future positions to trajectory optimization” [6]. Optimal
trajectories for time-critical street scenarios using discretized
terminal manifolds are presented in [19]. Planning methods
for vehicles which take advantage of lattices are described,
e.g., in [20] .

In contrast, path planning without a map is often applied
to unstructured or outdoor environment, as well as to swarm-
like maneuver planning, as in [16]. The work of Keller
et al. [7] describes the generation of ”optimal trajectories
for vehicle collision avoidance with a Timed Elastic Band
(TEB) framework”. The idea of elastic bands reaches back
to Quinlan et al. [12], who used them to refine coarse
trajectories in mobile robot navigation.

The timed elastic band approach is an extension to elastic
bands and has been designed originally for optimal trajectory
planning for non-holonomic mobile robots by Rösman et
al. [13]. In [14] an extension is proposed to avoid local min-
ima by planning multiple topologically distinctive trajectories
simultaneously and [15] combines timed elastic bands with
MPC. Timed elastic bands have been sucessfully applied to
planning dynamic maneuvers for CMUs BOSS self-driving
vehicle in [9]. More details about the AutoNOMOS project,
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for which the presented approach was designed can be found
in [1].

III. PATH PLANNING AND CONTROL ARCHITECTURE

The path planning approach described below was imple-
mented in the ROS framework [11] and tested in a simulation
environment. An overview of the involved modules is shown
in Fig. 1.

The simulator modules - or respectively the I/O modules
for sensors and actuators in a live environment - provide
the current pose x (position and orientation) as well as
the current velocity v (linear and angular) to all other
modules. Information about obstacles (size, pose, velocity
and acceleration) is provided to the path planning module.

Based on this data, the path planning module calculates a
plan consisting of a list of poses over time. A path following
module calculates a lookahead point p and extracts a desired
velocity vd from the current plan based on the current
configuration x and velocity v. Details on how the lookahead
point is calculated can be found in [4]. The controller then
calculates the control output u, i.e., actual steer momentum
and values for the throttle/brake actuators.

Due to performance reasons, the path planning and control
stack was implemented as a hybrid of open and closed loop
control concepts. While there is a direct feedback to the
path planning module in each iteration, all other modules
can be run at different (possibly higher) frequencies. In such
a case, they are working on the same unchanged plan for
some iterations.

A key advantage of this architecture is that the path
planning module can be run at a lower frequency while the
control output can still be generated at higher frequencies -
which is necessary to follow the planned trajectory precisely
and avoid oscillations. For the approach described in this
paper, path planning ran at a frequency of 10 Hz and all
other modules at 100 Hz. On the downside, this architecture
tends to slightly cut curves when following the plan due to
the calculation of a lookahead point [4].

simulator /
I/O modules

path planning

path followingcontroller

x, v, obstacles

x, v
x,v plan

p, vd

u

Fig. 1. Module overview and data flow

IV. STABLE TIMED ELASTIC BANDS WITH LOOSE ENDS

The path planning approach with stable timed elastic bands
with loose ends (STEBLE) proposed in this paper largely
builds on the timed elastic band (TEB) framework introduced
by Rösman et. al. [13]. The TEB approach was implemented
and published by Rösman as central part of the ROS package
teb local planner [2]. It extends the elastic band approach

proposed by Quinlan et. al. [12] with regard to temporal
aspects.

The original elastic band is described solely as a sequence
Q = {Xi}ni=0 of robot configurations in a three-dimensional
workspace with xi = (xi, yi, βi) (two coordinates for the
position on a plane plus one angle for the orientation). TEB
augments Q by an additional sequence of time intervals
τ = {∆Ti}n−1

i=0 , where each time interval ∆Ti denotes the
time needed by the robot to transit from configuration xi to
configuration xi+1.

The resulting timed elastic band B = (Q, τ) is then
optimized in terms of spatial configurations and temporal
intervals with regard to an weighted multi-objective func-
tion f(B), which is the weighted sum of components fx
described in the following. The TEB approach allows to
formulate objective functions regarding dynamic aspects,
such as velocity, acceleration or moving obstacles. The
resulting optimization problem is represented as a hyper-
graph (explained in detail in [13]) and solved using the g2o
framework [5].

During the optimization process, the first and last config-
uration are always fixed in the TEB approach. This property
is disbanded for the goal configuration in the STEBLE
approach.

A. Objective Functions

Most of the components fk of the weighted multi-objective
function

f(B) =
∑
k

γkfk(B) (1)

used in this paper were proposed by Rösman et. al. and
are described in detail in [13], i.e., restrictions for maximal
translational velocity, maximal translational and rotational
acceleration, non-holonomic kinematics and fastest path.

Also, existing functions from the implementation in [2]
were used to penalize backward-driving, falling below the
minimum turning radius and maintaining a specific velocity
at the start and goal configuration.

Limiting Centripetal Acceleration: Additionally, we added
an objective function to restrict the centripetal acceleration
ac, which implicitly restricts the maximal rotational velocity
ω depending on the velocity v and the radius r of the
arc segment between two consecutive configurations. The
centripetal acceleration aci can be computed directly from
the translational velocity vi and the rotational velocity ωi.
The radius ri does not have to be calculated explicitly, since
it is equal to vi/ωi.

vi =
1

∆Ti

∥∥∥∥( xi+1 − xi
yi+1 − yi

)∥∥∥∥ (2)

ωi =
βi+1 − βi

∆Ti
(3)

aci =
v2i
ri

= vi · ωi (4)

Limiting the centripetal acceleration has the advantage of
allowing higher rotational velocities at lower translational
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velocities. This enables sharp turns at low speed while still
maintaining a comfortable trajectory at higher speed.

Dynamic Obstacles: The reference TEB implementation
handles dynamic obstacles by penalizing the minimal sep-
aration of a configuration xi and the predicted position of
the obstacle (compare fob from [13]). In our approach, we
also use the minimal separation of a configuration xi and
a dynamic obstacle, but we represent both the obstacle and
the ego vehicle as a pair of a line segment l and a radius r
(compare Fig. 2). This is more appropriate for road vehicles,
which typically have different width and length, but still
reduces the computational cost compared to, e.g., matching
polygonal shapes. This representation also allows different
lateral and longitudinal safety margins by scaling either the
length l or the radius r.

rl
r

Fig. 2. The shape representing the ego vehicle and dynamic obstacles is
defined by a line segment l and a radius r.

The trajectory of dynamic obstacle j is predicted by mul-
tiplying the components of its velocity vector vj = (vx, vy)
with an time interval ∆Tn, which is determined for each
configuration xi of the band by summing up all time intervals
up to index i.

Following Trajectories: A central aspect of the STEBLE
approach is a variation of the objective function fpath
(compare [13]) for the attainment of intermediate waypoints.
The original function is based on penalizing the minimal
separation dmin,j between the TEB and an waypoint zj , if
it is above an threshold rpmax . To reflect the intention of
driving on the trajectory of another vehicle, we penalize the
separation (i.e., the euclidean distance) of each configuration
xi to a sequence of line segments representing the other
vehicles’ trajectories.

B. Flexible Goal Position and Fixed Time Intervals

Although the experiments with the modified objective
function described above provided promising results, the
generated trajectories tended to create unnecessary maneu-
vers in order to reach the goal location. However, the
restriction of having a fixed goal position is unnecessary,
because many positions on the other vehicle’s trajectory are
equally suitable to fulfill the following task. The general idea
is that the objective function fpath, which attracts the band
to the other vehicles trajectories, provides enough stability to
the planned paths, so that we can loosen the end of the elastic
band, i.e., the goal configuration can be changed during the
optimization process.

Furthermore, we can subsequently reduce the complexity
of the optimization problem drastically by using a static value
for ∆Ti between all configurations. Since we have a flexible

goal position, we do not need the flexibility in time. As
the experiments below have shown, this is also the most
important factor in stabilizing the band.

Although this can be seen as going a step back to the orig-
inal elastic band approach, we are keeping all the objective
functions with respect to ∆T , so that the expression ”timed”
is still justified. Dynamic changes of the velocity throughout
the band are still possible by varying the euclidean distance
between configurations. Also, it is a preferable feature to
have constant time intervals on the planned path, as some
calculations can be simplified (e.g. the prediction of obsta-
cles, compare IV-A).

C. Initializing and Adjusting the Band

The original TEB approach (compare [13]) relies on an
”outer loop” to adjust the number of configurations and time
intervals of the band to the planning horizon by adding or
removing them based on a hysteresis on ∆T . Therefore, the
band can be initialized with just two configurations (start
and goal) and one time interval between those - although
initializing the band with an ”initial path” is possible and
preferable for most scenarios.

For the STEBLE approach we cannot use a heuristic for
adjusting the band based on ∆T , since all time intervals ∆Ti
are fixed. Adjusting the number of configurations based on
distance over space would certainly be a valid approach,
but on the other hand, with a flexible goal position we
do not need to adjust the number of configurations at all.
Subsequently, the initialization of the band becomes more
important, since it determines the final length of the band
(with regard to time).

For the experiments described below the band was initial-
ized with a rather simple heuristic. The number of initial
configurations n is determined by ∆Tinit (the initial - and
in case of fixed time intervals final - value for all time
intervals), the average of the start and goal velocity vavg
and the euclidean distance between the start and goal dsg .

n =
dsg

vavg ·∆Tinit
(5)

The initial positions are then sampled uniformly along the
direct path between start and goal, the initial orientation is
pointing towards the goal for all configurations.

V. EXPERIMENTAL RESULTS

A. Scenario

Due to the huge amount of parameters influencing the
performance of the proposed approach, a rather simple
scenario was chosen. Nonetheless, it is a scenario occurring
often in the real world at highway entries. It consists of
three dynamic obstacles driving with a constant velocity on
a straight line with a distance of 30 m between them. The
obstacles as well as the ego vehicle are modeled with a width
of 2 m and a length of 5 m. The ego vehicle is starting with
the same orientation in 4 m distance to the trajectory of the
obstacles (compare Fig. 3).
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30 m 30 m

4 m

Fig. 3. Starting configuration of the ego vehicle (blue) and three dynamic
obstacles (red). For some of the experiments the longitudinal offset of the
ego vehicle to the obstacles is varied.

The longitudinal offset of the ego vehicle to the closest
obstacle varies for some experiments. If not stated otherwise
it is set to 0 m.

The initial velocity of the obstacles was set to 25 m/s
(90 km/h). Nonetheless, due to the architecture of the
simulation, which does not guarantee a specific timing in
the sequence of initialization, and the control parameters
of the simulated obstacles, there are minimal variations in
the actual velocity (σv ob ≈ 0.02m/s). The mean of the
velocity of the obstacles is slightly below the initial value
(µv ob ≈ 24.84m/s). The ego vehicle is starting with the
same initial velocity as the obstacles, if not stated otherwise.

The (initial) goal for the path planning is set to a position
200 m ahead of the closest obstacle, i.e., in 4 m lateral
distance and 200 m longitudinal distance from the ego
vehicle. The desired orientation and velocity at the goal
position are chosen so that the ego vehicle tries to match
the respective values of the obstacles.

B. Parameters, Thresholds and Weights

In this section, we describe the parameters used for the
experiments described below. Although other parameter sets
worked equally well, the following values were set as default
for the experiments throughout this paper.

The number of iterations for optimizing the underlying
graph (compare [5]) was set to 100 for the STEBLE ap-
proach. For the experiments using the original TEB approach
of initializing the band with only two configurations and
adjusting the number of configurations in an outer loop,
the number of iterations of this outer loop as well as the
iterations for the graph optimization was set to 10, which
also results in 100 overall iterations optimizing the graph.

The initial - and in case of STEBLE final - value for all
∆Ti was set to ∆Tinit = 0.1 s. The threshold for adding
or removing configurations was set to 0.01 s for the original
TEB approach (compare IV-C).

An overview of the thresholds used for the objective
functions is given in table I. The ε value (compare [13])
was set to 0 where applicable. Some values are directly
determined by the vehicle dimension and dynamics, others
depend on user preferences regarding safety distance and
driving comfort.

For a minimal separation from obstacles, several values
were tested. Fig. 4 depicts the results for 2 m, 3 m and
4 m (with the objective function also taking into account the
dimensions of the obstacles and the ego vehicle - compare
IV-A). It can be clearly seen that the resulting trajectories
are laterally shifted - nonetheless the general behavior is
quite similar. A threshold of 2 m pushes the trajectory closer
to the obstacles, which then enables an (on average) earlier

TABLE I
THRESHOLDS OF THE OBJECTIVE FUNCTIONS

fx Threshold Description
fv 30 m/s maximum velocity

facc x 2 m/s2 maximum longitudinal acceleration
facc y 2 m/s2 maximum centripetal acceleration

facc theta 1 1/s2 maximum rotational acceleration
fpath 0 m attraction to obstacle trajectories
fob 2 m separation from obstacles
fturn 4 m minimum turning radius

transition to the obstacles’ lane. The other values produce
similar trajectories, but lane changes tend to happen later.
Additionally, the impact of any threshold is tightly connected
to the weight of the corresponding objective function. As a
value of 2 m still preserves a collision free path for all tested
scenarios - and the default weights described below - the
value was chosen as default for the experiments.

(a)

(b)

(c)

Fig. 4. Each subplot shows trajectories of the simulated ego vehicle from
100 repetitions (blue lines) of our scenario and the obstacles’ trajectory
(red dashed line). For each simulation we used the default parameter set
described in Section V-B, except for the minimal distance to obstacles
threshold, which was set to (a) 2m, (b) 3m and (c) 4m. Variations of the
trajectories within a subplot result from minor differences in the velocity of
the obstacles (compare Section V-A).

Similarly, the value for maximum centripetal acceleration
does obviously change the trajectories, but does not change
the general behavior, so plots are omitted. It also depends on
the preference how smooth the trajectories should be. The
chosen default value of 2 m/s2 proved to be comfortable
when using it in a real vehicle in previous works. Corre-
spondingly, the values for maximum lateral and longitudinal
as well as rotational acceleration were chosen to provide
comfortable trajectories rather than exploiting the vehicle
limits.

The weights for the objective functions were mostly deter-
mined heuristically. Their influence on the actual trajectory
is tightly connected to the weights and thresholds of other
objective functions. If several objective functions compete
in a certain configuration, the relative weight difference
defines the priority of the objectives. Given the large space
of configurations, it is difficult to determine optimal values,
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especially for different scenarios. The default values chosen
for the experiments are listed in table II.

TABLE II
WEIGHTS OF THE OBJECTIVE FUNCTIONS

Weight Value Description
γv 30 velocity (maximum, start, goal)

γacc x 30 maximum longitudinal acceleration
γacc y 30 maximum centripetal acceleration

γacc theta 30 maximum rotational acceleration
γtime 100 penalize sum of ∆Ti (prefer faster paths)
γpath 300 attraction to obstacle trajectories
γob 1000 separation from obstacles
γnhk 10000 non-holonomic kinetics

γforward 10000 penalize backward driving
γturn 10000 minimum turning radius

While objective functions relating to acceleration and
velocity are clearly not as important as avoiding obstacles,
maintaining the kinematic constraints was chosen as top
priority - since we do not want to plan trajectories which are
not drivable. The specific ratio between the different weight
classes was chosen heuristically - other ratios provided
similar results.

As can be seen in Fig. 5, the result of changing the
weight γpath for the objective function for following the
obstacles trajectory is quite similar to changing the threshold
for minimal obstacle separation. Although the trajectories are
shifted towards the obstacles, the general outcome does not
change significantly. The default value for the experiments
was set to γpath = 300, but different values worked also
well.

(a)

(b)

(c)

Fig. 5. Each subplot shows trajectories of the simulated ego vehicle from
100 repetitions (blue lines) of our scenario and the obstacles’ trajectory
(red dashed line). For each simulation we used the default parameter set
described in Section V-B, except for the the weight γpath, which was set
to (a) γpath = 100, (b) γpath = 300 and (c) γpath = 500. Variations of
the trajectories within a subplot result from minor differences in the velocity
of the obstacles (compare Section V-A).

C. Different Start Configurations

The STEBLE approach generated smooth trajectories for
several variations of the scenario described in Section V-
A. In this section we provide plots of the trajectories and

velocity profiles for some exemplary starting configurations.
Fig. 6 depicts the results for different starting positions. If the
ego vehicle starts in a configuration, where it can change on
the obstacles trajectory directly with enough separation from
the obstacles, it does so as expected. If not, the ego vehicle
decelerates or accelerates depending on the longitudinal
offset and falls behind or goes ahead the closest obstacle
respectively.

(a)

(b)

(c)

(d)

Fig. 6. Exemplary trajectories and the planned paths with the ego vehicle
starting at different longitudinal offsets (a) −5 m, (b) 0 m, (c) 5 m and
(d) 10 m to the closest obstacle. Circles represent the position of the
ego vehicle. Squares represent the position of the closest obstacle. Lines
represent the planned paths. Colors indicate the elapsed time (trajectories
planned at the beginning are red, those planned later are yellow and green).
Newer paths may occlude older ones.

(a)

(b)

Fig. 7. Exemplary trajectories and the planned paths with the ego vehicle
starting at longitudinal offset 0 m to the closest obstacle with velocity (a)
v = 20 m/s (5 m/s slower than obstacles) and (b) v = 30 m/s (5 m/s
faster than obstacles).

Varying the ego vehicles velocity in the start configuration
relative to the obstacles velocity yields similar results. The
ego vehicle is adapting to the velocity of the obstacles,
while using the difference in momentum in the beginning to
get into the gap between two obstacles. The corresponding
planned paths are depicted in Fig. 7, velocity profiles in
Fig. 8.

If there is a large difference between the obstacles’ and the
ego vehicle’s velocities, the planned paths transitions forth
and back between the two lanes, in order to avoid a collision
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(a)

(b)

Fig. 8. Velocity profiles of the planned paths with starting velocity (a)
v = 20 m/s (5 m/s slower than obstacles) and (c) v = 30 m/s (5 m/s
faster than obstacles). Triangles represent the velocity of the ego vehicle at
a specific longitudinal position. Lines represent the corresponding planned
velocities.

with obstacles further behind or ahead. Depending on the
weights of the objective functions, it is favorable to switch on
the obstacles trajectory even for short distances. If frequent
lane changes are undesired behavior, it can be avoided by
tuning the thresholds and weights for maximum accelerations
or attraction to the obstacles trajectory.

D. TEB vs. STEBLE

In this section we compare the proposed approach with
fixed time intervals and a flexible goal position to the original
TEB approach (using flexible time intervals and a fixed
goal position) over several iterations of the same scenario
and parameter set. However, as described in Section V-A,
there are minor variations in the velocity (and subsequently
position) of the obstacles, which cause different trajectories.
As can be seen in Fig. 9, there is no variance in the
trajectories when obstacles are ignored.

(a)

(b)

(c)

Fig. 9. The actual trajectories driven by the simulated ego vehicle in
100 repetitions of the scenario with the default parameter set (compare
Section V-B) and minor variations in the velocity of the obstacles (compare
Section V-A). (a) The original TEB approach (fixed goal position, flexible
time intervals). (b) The STEBLE approach (flexible goal position, fixed
time intervals). (c) The trajectory without considering obstacles (identical
for both approaches)

Both approaches generate sensible trajectories for the
examined scenario. The most obvious difference is that,
while the original approach is performing the change to
the obstacles trajectory as soon as possible, the STEBLE

approach performs the actual lane change at intervals widely
scattered over the latter half of the distance. In some cases
(∼ 5% ) it does not change at all. While this may seem
non-optimal, the generated trajectories are generally safer -
in terms of separation from obstacles - as the ego vehicle
is not forced on the obstacles trajectory. With a fixed goal,
there are several configurations, where the planner is forced
to violate some of the constraints to reach the goal.

Furthermore, the trajectories generated by the proposed
approach can be seen as much more stable, since the actual
change to the other lane resembles a very similar sigmoidal
curve for all iterations - despite the longitudinal shifts. In
contrast, the original TEB approach sticks closer to the
trajectory generated without considering obstacles. However,
the trajectories are scattered along this path, because the
ego vehicle gets ”pushed out” of the seemingly optimal
path much more. This is probably due to the optimization
falling in many (nearly) equally costing local minima of the
objective function.

(a)

(b)

(c)

(d)

Fig. 10. Exemplary trajectories and the planned paths for different
graduations between the original TEB and the proposed STEBLE approach.
(a) Fixed goal position, flexible time intervals, initialization with two con-
figurations. (b) Flexible goal position, flexible time intervals, initialization
with two configurations. (c) Flexible goal position, flexible time intervals,
initialization with number of configurations based on heuristic. (d) The
STEBLE approach (flexible goal position, fixed time intervals, initialization
with number of configurations based on heuristic).

Fig. 10 depicts exemplary planned paths for different
graduations between the original TEB and the proposed
approach. It can be clearly seen that the most stabilizing
factor is the fixing of the time intervals. While all variations
with flexible time intervals plan largely varying paths over
the course of one iteration, the STEBLE variant plans straight
in the beginning and at some point switches to sigmoidal
curves closely resembling the actual trajectories (compare
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Fig. 9).
Nonetheless, it can also be noticed that the initialization of

the band with the simple heuristic described in Section IV-
C also impacts the stability of the planned paths (and
subsequently the resulting trajectories) with flexible time
intervals. The optimization seems to fall into a relatively
small set of local minima close to the initial path in this
case.

Another interesting observation is that the STEBLE ap-
proach does not suffer from the invalidation of the objective
function ftime, which always returns the same value for fixed
time intervals. With flexible time intervals, for low values of
γtime the ego vehicle tends to slow down rapidly, switch on
the obstacles trajectory with a sharp curve and then accelerate
to the goal velocity. This behavior is prevented when using
fixed time intervals (i.e., a fixed length of the plan in terms
of time), because slowing down (when not on the obstacles
trajectory) leads to proportionally less configurations on the
band which are close to the obstacles trajectory - which then
is penalized by fpath.

VI. CONCLUSIONS

It can be concluded, that the proposed STEBLE approach
works well for the simulated scenario tested in this paper, but
obviously has to be further tested in more complex scenarios
- mainly involving different trajectories of the obstacles, e.g.
with curvature and dynamic acceleration - and with real
vehicles. It has been shown, that STEBLE is much less
prone to changes in the parameters and weights (in terms
of always producing similar, more ”human-like” paths) than
the original TEB approach.

A minor drawback is the property that for some config-
urations the ego vehicle tends to change relatively late on
the obstacles trajectory - and sometimes not at all - due to
the optimization falling into local minima. This is a general
problem of the elastic band approach and can certainly
be mitigated by generating several plans simultaneously
in different homotopy classes (as proposed by Rösman et
al. [14]) at the cost increased processing time.

There is also some potential in tuning the weights and
parameters, but probably the most influential improvement
would be additional objective functions. A natural candidate
is a function penalizing driving with no longitudinal offset to
other vehicles - a heuristic experienced human drivers often
follow instinctively.

Furthermore, future research can be done on the topic,
where to set the initial goal for the presented approach.
Although the goal position is not fixed, it directly impacts
the initialization of the band and subsequently the overall
length of the band with regard to time - which then leads to
potentially different planned paths. While for the experiments
above a static position was chosen to reduce the complexity
of the analyzed scenario, an obvious extension would be to
change the initial goal position dynamically with relation to

the observed obstacles and a specified planning horizon with
regard to time.
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