
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021 1

Robust LiDAR Feature Localization for
Autonomous Vehicles Using Geometric

Fingerprinting on Open Datasets
Nicolai Steinke1, Claas-Norman Ritter1, Daniel Goehring1 and Raúl Rojas1

Abstract—Localization is a key task for autonomous vehicles. It
is often solved with GNSS but due to multipath the performance
is often not sufficient. Feature localization systems using LiDAR
can deliver an accurate localization but the creation of the
necessary feature maps is an effortful task. With digitization
of urban planning processes a lot of street level data is being
generated and increasingly becomes openly available. We propose
a novel feature localization system which utilizes geometric
fingerprinting to robustly associate features to a feature map
generated from this open data from the city of Berlin. With
this association, we perform a precise localization of a vehicle in
areas spanning over several square kilometers using an optional
IMU, the vehicle’s CAN-odometry and an initial pose estimate.
We evaluated our system with our autonomous car in real
world scenarios and achieved a centimeter precision localization
accuracy outperforming a high-cost GNSS. The source code will
be published at https://github.com/dcmlr/fingerprint-localization

Index Terms—Localization, Mapping, Recognition

I. INTRODUCTION

Aprecise self-localization is a necessary preposition for
robots in order to operate autonomously. GNS systems

alone are not sufficiently accurate especially when it comes to
autonomous driving in dense urban traffic conditions. Feature
localization algorithms using LiDAR sensors have proven
their ability to provide localization estimates with centimeter
level precision. Most current algorithms rely on feature maps,
which are self-acquired using slam algorithms. Generating
precise large scale feature maps with slam algorithms is an
effortful task. Following the open data strategy of the European
Union (directive 2003/98/EC), a lot of geographic data is
openly available and could be used for the localization of
autonomous vehicles. Drawbacks of these datasets lie in the
facts that they are often several years old and the accuracy
is not comparable to self-acquired data. We present a fea-
ture matching algorithm using geometric fingerprints which
robustly matches the geographic data from the openly available
datasets for the city of Berlin [10] to the perception of a

Manuscript received: October, 15, 2020; Revised January, 13, 2021; Ac-
cepted February, 9, 2021.

This paper was recommended for publication by Editor S. Behnke upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by the Bundesministerium für Verkehr und digitale Infrastruktur
(BMVI) - Automatisiertes und Vernetztes Fahren auf digitalen Testfeldern in
Deutschland.

1Dahlem Center for Machine Learning and Robotics (DCMLR), De-
partment of Mathematics and Computer Science, Freie Universität Berlin,
Germany, {nicolai.steinke; cn.ritter; daniel.goehring; raul.rojas}@fu-berlin.de

Digital Object Identifier (DOI): see top of this page.

LiDAR sensor in real time, and is capable of providing a
centimeter level localization using these matchings. The Berlin
dataset offers a lot of different feature types to select from. We
decided to use pole-like features (trees, traffic lights and traffic
signs), walls and corners of buildings because these features
are easily detectable with a LiDAR, very common in urban
environments, do not change over time, and they are robust in
respect to seasons.

II. RELATED WORK

Self-localization approaches have a long history in robotics
and a variety of solutions exist depending on the problem
domain and the available data. Markov localization, espe-
cially Monte-Carlo Localization methods have proven their
strengths in many applications and for all kinds of sensors,
e.g. in museum environments [14], in office spaces [13],
for soccer playing robots [6], in outdoor environments with
pole features [7], [9], [12], [16], on highways using traffic
signs and lane markings [5], in tunnels of mines [15] and
for wheeled robots [3]. LiDAR sensors proved to be capable
to achieve highly precise localization results using feature
localization algorithms [2], [7], [9], [11], [16]. In recent
publications LiDAR SLAM approaches were improved to
incorporate global state estimations from GNSS sensors to
counter drift issues [11] and it was shown how current Monte-
Carlo Localization methods can be improved using machine
learning [2]. Algorithms that use semantic features in outdoor
environments often rely on pole features, which have proven
to be robust and easily detectable as shown by Schaefer [7],
who proposed a pole localization system and evaluated its long
term stability over 15 months. Research by Sefati [9] and
Weng [16] showed that pole features are robust and stable
features in challenging urban scenarios with many dynamic
objects and occlusions. Pole feature localization algorithms
usually rely on feature maps and utilize particle filters in
order to match the observed features to the map [7], [9],
[12], [16]. A different approach is the extraction and matching
of geometric patterns of feature locations to a feature map.
Brenner [1] showed that the local patterns of pole features
in urban road scenes are sufficiently unique to be used as
fingerprints for a matching algorithm. This was demonstrated
in a subsequent article where Schlichting [8] reduced the rate
of erroneous matchings of pole features from 83% to 11%
compared to a nearest neighbor baseline. The experiments
were performed using a low-cost LiDAR attached to a vehicle.

https://github.com/dcmlr/fingerprint-localization

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

The feature maps are mostly created by applying the same
pole detector that is used for the localization task to registered
3d point clouds [7], [9], [16]. This limits the prospects of
replicating the performance with another detector or sensor
on the same map and it exposes economic limitations on the
localization systems since the point clouds have to be acquired
with a LiDAR equipped vehicle and processed for every area
beforehand.

III. FEATURE DETECTION AND TRACKING

A. General feature detection considerations

We selected the following feature types for our implementa-
tion: pole-like structures, building and fence corners, walls and
fences, because they are common and easily detectable with
a 64-beam Velodyne HDL-64E LiDAR. Pole-like structures
consist mostly of trees, traffic signs, traffic lights and street
lights. Our tests showed that there are places where there are
not enough pole features to perform an accurate localization.
In these cases the addition of building corners and walls
improved the localization results. In order to maintain a high
execution performance we tried to keep the feature detection
algorithms as fast and simple as possible. The main goal of
the detector is to detect as many features as possible even if
this leads to a higher false positive rate. The feature tracker
and the fingerprint recognition should be able to filter the
false positives. The LiDAR produces point cloud data which
is divided in 64 rings, one for each laser beam. Due to the
mounting of the lasers, the rings stack on top of each other.
The detection algorithms are scan line algorithms, which use
4-8 of these rings as scan lines per point cloud. The point
clouds are merged 360◦ point clouds, which are generated at
a 10 Hz frequency.

B. Detection of pole features

The pole feature detection scan line algorithm works as
follows: Assuming the car sits on a perfectly even and empty
plane with no objects around it, every laser of the sensor hits
the ground somewhere around the car because all lasers have a
downward angle. The resulting point trace over time for each
laser is a circle on the plane. If there is any pole-like feature
some points are missing from the circle because they are on
the pole. Considering only one laser, the pole is visible in
the resulting point cloud as a small number of points which
are significantly closer to the car than the points around it.
The principle is visualized in Fig. 1, where the three points
in the center are closer to the laser origin than the ground
points on the sides. This is the working model of our scan line
pole feature detector: find some points spanning a horizontal
distance less than one meter which are at least one meter closer
to the car than the points around it. If we see the pole feature
in the majority of the rings processed by the detector (we
used eight rings), the detector will return it as a detected pole
feature. For the center point estimation, we assume that the
poles are circular or rectangular in shape, which is true for
the majority of poles seen on the streets of Berlin. We take
the two most outer points of the pole on each side and combine
them to a line. Then we take the center point on the surface

sensor origin

Fig. 1. Schematic representation of a pole feature (blue) with laser intersection
points (yellow).

and the closest point to it from the line formed by the selected
outer points to get the direction vector. The center point is then
placed at 3

2 times the pole width along the direction vector
(we usually measure about 2

3 of the pole width). Note: If the
pole is convex the direction vector will point away from the
car, if it is concave, it will point towards the car. The center
point estimate is done for every ring and the mean of the
estimates is used as final pole feature position. This detector
is much simpler as the ones proposed in other works [7], [9],
[16] and produces many false positives, but it has a very good
execution performance (on average 9.1 ms per point cloud on
a 2013 Intel Xeon E3-1221) and the fingerprint recognition
step filters the false positives.

C. Detection of wall and corner features

We also use a laser scan ring based scan line algorithm
for the detection of wall features. The algorithm adds points
consecutively and tests if they form a line by selecting two
random points and checking for every new point if the distance
to the line and the last added point falls below a threshold
(we used 0.25 m for the maximum line distance and 0.5 m
distance from the last point). If a new point lies outside the
inlier distances, a new line segment starts. The collected points
of the last line segment are checked for their total length and if
it is longer than a threshold of five meters it is considered to be
a wall hypotheses and a RANSAC line fit is performed. With
the corner feature detection we mainly aim for the detection
of building corners. Thus we define a corner feature as two
walls meeting in an angle between ±80◦ to ±100◦.

D. Feature tracking

We use a simple, nearest-neighbor based tracking approach
for pole and corner features, which are treated as point features
in the feature tracker. The tracking algorithm is executed
for every point cloud measurement from the LiDAR which
operates with a frequency of about 10 Hz. The tracking on
wall features is performed in similar fashion as the tracking
of pole and corner features with the difference that not only
the distance but also the angle is considered.

IV. FEATURE FINGERPRINTING

In order to localize the vehicle, the detected features must
be associated with stored features in the feature map. Since
the data we are using is already several years old (2015) and
not error-free, the algorithm is required to be robust against
missing and changing features in the map. We developed
a novel fingerprint matching algorithm, which is accurate,
efficient and robust against map inaccuracies. The algorithm

STEINKE et al.: LIDAR FEATURE FINGERPRINT LOCALIZATION 3

fp1

fp3

fp4fp5

N

fp2

E

Fig. 2. Fingerprints (angles w.r.t the north vector are green dashed arrows,
distances are blue lines) of the centered point feature (red, others are yellow).

identifies a feature by its type and its characteristic geometric
fingerprints (Fig. 2). A feature’s fingerprint vector consists
of all pairwise distances and angles to all other features in
a predefined radius (we used 50 m). The angle is measured
clockwise in respect to the grid north of the chosen Cartesian
coordinate system. This means that a localization is only pos-
sible if the north direction is known with at least some degree
of accuracy (less than ±10◦) for the initial pose estimate.
This might seem like a major drawback, but in our experience
even low cost GNSS-receivers can determine the north vector
with sufficient accuracy in a moving vehicle. This limitation
could be overcome by matching only the distance field of the
fingerprints until a stable matching is established with the cost
of longer initialization time since more fingerprints would need
to be collected until a valid matching can be found.

A. Geometric fingerprints of point features

The fingerprint vector of feature a consists of tuples of the
Euclidean distance and the angle of the feature a to a feature
b and all other features in the fingerprinting range (1).

~fa = {(d(a, b), α(a, b)) , ...} (1)

The calculation of the angle between two point features p1
and p2 is shown in (2). The resulting angle α(p1, p2) is in the
range [−π, π] where the UTM north vector is defined as zero.

α(p1, p2) = cos−1
(
p1y − p2y
d(p1, p2)

)
sgn(p1x − p2x) (2)

B. Geometric fingerprints of edge features

We found that the algorithm would not perform well in
very narrow roads where pole features are sparse and often
too close to the walls of the buildings to be consistently
detected. Therefore we added the possibility to use corners
and walls of buildings to improve the feature density in very
narrow streets. We decided to use these features because they
are frequently present in dense urban environments, easily
detectable and rarely occluded for a LiDAR mounted on
a car’s roof. However, walls can only be used to improve
the localization laterally since they are usually only partially
observed. The fingerprints must allow to identify a wall even
if only a fraction of it has been detected. Hence we treat an
edge feature for fingerprinting as an infinite line and define the

fp2

fp1

E

N
E

N

Fig. 3. Two fingerprints (blue dashed lines and green arrows) of the red edge
feature (other features are yellow).

distance between an edge and a point feature as the smallest
Euclidean distance between the two (Fig. 3).

~l1 =

(
e1x2
− e1x1

e1y2
− e1y1

)
|e1|

(3)

proj = 〈~l1, ~p1〉 (4)

c(p1, e1) = proj · ~l1 +

(
e1x1

e1y1

)
(5)

d(p1, e1) =
√

(p1x − c(p1, e1)x)2 + (p1y − c(p1, e1)y)2 (6)

Equation 6 defines the distance function d for an edge defined
by two points e1 = ((e1x1

, e1y1
), (e1x2

, e1y2
)) and a point

feature p1 = (p1x , p1y). The closest point for p1 on the edge
e1 is defined by the function c(p1, e1), which is shown in
(5). Note that the multiplication proj · ~l1 in (5) is a scalar
multiplication of the direction vector l1 since proj is the scalar
result of the inner product in (4).

~r = (c(p1, e1)x − p1x , c(p1, e1)y − p1y) (7)

Equation 7 shows the calculation of the rejection vector ~r
from the point feature p1 = (p1x , p1y) and the edge feature
e1 = ((ex1

, ey1), (ex2
, ey2)). The rejection vector points from

the closest point on the edge e1 to the point p1.

α(p1, e1) = cos−1
(
ry
|~r|

)
sgn(rx) (8)

Equation 8 defines the calculation of the angle from a point
feature p1 to an edge feature e1. The angle is measured
between the vector from the closest point on the edge e1 to
p1 with respect to the y-direction (north) vector.

α(e1, e2) = cos−1
(
~l1 · ~l2
|~l1||~l2|

)
sgn(l1x)sgn(l2x) (9)

The angle between the edges e1 and e2 is defined in (9). The
direction vector ~l2 of the edge e2 is defined analogous to ~l1
(3). As in (2) the sign of the x-coordinates of the directional
vectors determine the sign of the resulting angle.

α(e1) = cos−1
(
l1y

|~l1|

)
sgn(l1x) (10)

The angle of an edge feature is calculated by the inverse cosine
of the y-coordinate of the edge vector in relation to the length
of that vector (10). This is basically the same calculation as
performed for the rejection vector for edge to point angles (8).

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

We define the angle of an edge feature against the map north
vector as the angle value of a fingerprint against any other
edge feature (9).

d(e1, e2) = α(e1, e2) (11)

The distance between the two edge features e1 and e2 is
calculated as angle between them (11). Since edge features are
considered with infinite length, the Euclidean distance between
two edges is zero at one point as long as they are not perfectly
parallel. Hence we decided to use the angle difference in this
case, which causes the distance and angle fingerprint fields
to be dependent only on the edge angle. This weakens the
uniqueness of a fingerprint. However, we found that only the
angle of our detected walls was robustly detectable under
almost all circumstances.

C. Apriori map creation and storage

We retrieved the feature positions with a geographic infor-
mation system (GIS) application which is capable of accessing
the web feature services (WFS) operated by the city of Berlin
(available at [10]). We collected the information about street
trees, traffic lights, traffic signs, street lamps and building
models. The building models contain the buildings outlines
as polygons which can be used to compute the wall features.
We defined an angle threshold value of ε = π

10 for two
polygon edges to be considered to form the same wall segment
and a minimal wall length of 5 m. If two building outline
polygon edges meet at an absolute angle in [π2 − ε,

π
2 + ε], it

is considered to be a building edge. With the resulting feature
set M we compute the angle and distance fingerprints values
for all feature pairs (a, b) ∈ M × M , where the distance
d(a, b) < 50 m. For storage purposes we use an SQLite
database with the Spatialite extension for spatial data and
indexing. The fingerprints are stored in a table along with the
position, an identifier and the type (pole, corner, wall) of the
feature they are belonging to. A spatial index (implemented
as R*-tree in Spatialite) on the feature position provides fast
searching and filtering capabilities. The maps we generated
used 33.75 MiB of storage space per km2 on average.

V. FEATURE RECOGNITION AND LOCALIZATION

The recognition of the fingerprinted features works as
follows: The fingerprints of all detected features are calculated
locally on the fly and then compared with the ones stored in
the feature map database. An uncertainty threshold value is
used to counter measurement inaccuracies. From this com-
parison a list of features, sorted by the count of matching
fingerprints, is received. This principle is visualized in Fig. 4,
which shows the pre- and post-matching state: The locally
calculated fingerprints (grey lines) of the detected features
(yellow cylinders and colored line segments) are compared
against the fingerprints in the database and in case of matching
fingerprints (colored lines) a feature association is established
(green). Matchings with an additional red and blue cylinder
were used for the localization. Some features have a grey
outline next to them, which indicates a positional offset
between the detected feature and the one stored in the map.

Equation 13 represents the point feature recognition query
using relational algebra against the fingerprint table proposed
in sec. IV-C. It is calculated for every feature and filters all
stored fingerprints by the feature position (d(fx, fy, qx, qy <
r)), where the distance d of the database feature with the
coordinates fx, fy to the coordinates of the query feature
qx, qy must be smaller than the search radius r. The second
filter matches the feature type (point or edge). The fingerprint
matching is represented in the term p (12): For every tuple
consisting of a distance value qd and an angle value qα of the
query feature q a filter condition is generated, which holds for
tuples having a distance and angle difference lower than the
corresponding tolerance values εd and εα. These values can
be adjusted at runtime in order to compensate for changed
measurement conditions. The selection operator σ (13) returns
the count of the matching fingerprints, the corresponding
identifier and the position for every map feature in the search
radius r.

p =

n∨
i=0

(|qdi − fd| < εd ∧ |qαi − fα| < εα) (12)

σd(f,q)<r∧ft=t∧p(Σ(id), id, x, y) (13)

The relational algebra representation of the recognition of the
edge features is shown in (14). The query is mostly identical
to (13) with the exception of an additional term d(fp, qp) <
εoR, which enforces the position of the other features of the
fingerprints to be closer together than εoR and the selection of
the start and end point of the edge. This term was introduced
to avoid multiple matching of edge to point fingerprints. In
the case of edge to edge matching it is omitted. Generally
the feature with the most matching fingerprints is correctly
associated with the corresponding detected feature, but in order
to improve the localization result we use a median filter to
reduce the variance of the matched feature’s positional offsets.

σd(f,q)<r∧ft=t∧p∧(d(fp,qp)<εoR)(Σ(id), id, x1, y1, x2, y2))
(14)

In order to maintain a low computation time, a reduction in the
search radius r for the features in the map is necessary. The
search radius should not be larger than 2 to 5 m depending on
the localization uncertainty and mapping accuracy. Nonethe-
less in case of a very high positional uncertainty, this threshold
can be arbitrarily large with higher computational load.

In order to find the transformation between matched fea-
tures, we used the PCL singular value decomposition imple-
mentation of the standard point-to-point error metric, which
is also used by the ICP algorithm (TransformationEstima-
tionSVD) [4]. We use the transformation estimate to improve
our existing localization, which is calculated from an initial
position, the wheel odometry and an IMU utilizing an extended
Kalman filter. We used the open source implementation of
the robot localization node module (http://wiki.ros.org/robot
localization) of the Robot Operating System (ROS) and fused
the data with the wheel odometry and IMU data of the car.

VI. EXPERIMENTS AND EVALUATION
The evaluation focuses on the robustness of the feature

matching algorithm and compares the global localization ac-

http://wiki.ros.org/robot_localization
http://wiki.ros.org/robot_localization

STEINKE et al.: LIDAR FEATURE FINGERPRINT LOCALIZATION 5

(a) Detected features (yellow) and their fingerprints (grey lines)

(b) Matched and not matched features (green and red) of the feature
map and matched fingerprints (colored lines)

Fig. 4. Visualization of the feature matching process

curacy with a GNSS in different scenarios. We performed one
experiment to evaluate the robustness and another two in order
to evaluate the accuracy based on a repeatability measure.
The first experiment was performed in a challenging urban
scenario (Fig. 5) with bigger and smaller residential roads
with a length of about 16 km, which were driven according
to the speed limits (between 30 km/h and 50 km/h). The
feature map was spanning over an area of about 35 km2,
contained 33 665 features and was created from unmodified
openly available data. The feature matching needed an average
of 35.6 ms on a 2013 Intel Xeon E3-1221 CPU (4 cores) and
was executed with 10 Hz frequency. The implementation uses
four threads for the database matching and caches matchings
for up to one second depending on the count of matching
fingerprints. It is purely CPU based and no GPU is used.
The database file is stored on a consumer grade SSD-drive.
The coloring of the trajectory (Fig. 5) represents the count of
matched features in that position. While it mostly stays in a
sufficient range for a stable and accurate localization, it drops
to lower levels in some very narrow residential streets. This
can be explained by the lower overall feature count due to the
narrowness of the street and the lack of fences in the used data
set for the feature map. This leads to a much lower observable
feature count in some areas. Despite these problems, the
visible feature density is almost anywhere high enough in
order to maintain a consistent matching. Only one full loss
of matchings occurred (red part of the trajectory of Fig. 5)
which was caused by a construction site and road closure,
which occluded the LiDAR and forced us to do a u-turn.
However a stable matching was regained very quickly and
without any intervention. Excluding the initial pose estimate,
there was no fusion of GNSS data and the localization was
based only on the LiDAR feature localization, IMU and wheel
odometry. The system’s robustness is underlined by the fact
that does not get “lost” even after driving through several

matching count
0
1-4
5-10
10-15
15+

0 250 500 m

Fig. 5. Matching robustness evaluation in a challenging urban area. Satellite
imagery: [10]

underpasses (Fig. 5 center), which obstruct the LiDAR and
limit the feature visibility. The evaluation of the localization
accuracy is challenging because of the lack of a precise
ground truth. Even our high cost Applanix GNSS is not able
to provide a localization accuracy that is precise enough in
order to use it as ground truth. The system is theoretically
capable of delivering a position estimate within an accuracy
of centimeters. However, in practise the position estimation
error can reach up to a meter in a moving vehicle due to
multipath reflections, limited GPS visibility and low quality of
the RTK-Signal. Therefore we chose a repeatability measure
for the evaluation of the localization accuracy and perform a
comparison between the high cost GNSS fused with the IMU
and wheel odometry and the feature localization using different
sensor setups. For the repeatability measure the car is driven
in a closed-loop track for several laps. The lateral localization
error is calculated as distance from the average trajectory of all
laps for every trajectory point. The disadvantage of this method
is that the driver of the test vehicle cannot drive perfectly on
the lane center, which introduces an additional error in the
localization accuracy. This error is more pronounced at the
u-turn maneuvers which are excluded from the evaluation for
this reason. Additionally we perform a spatial filtering with a
distance of 16 cm between two consecutive points to avoid a
bias towards slowly driven and stopping parts of the trajectory.
Two repeatability experiments were executed and evaluated for
accuracy. The first took place in a parking lot, which exhibits
near perfect conditions for both localization methods. It is a
big open space, which minimizes multipath reflections for the
GNSS and there are a lot well visible poles which benefit
the feature localization. A line pattern on the street helps the
driver to repeat the same trajectory with high precision. One
lap is about 450 m long and was driven with an average speed
of about 25 km/h with a maximum of 50 km/h. We drove 13
laps with a total distance of 5.85 km.
The second experiment replicates a more realistic traffic sce-
nario where the car was driven repeatedly in normal traffic

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

TABLE I
LOCALIZATION ACCURACY EVALUATION

parking lot urban street

IMU w/o IMU IMU w/o IMU

lat. error (m) GNSS HDL64 Lux LIO-SAM HDL64 Lux GNSS HDL64 Lux LIO-SAM HDL64 Lux

max 0.391 0.193 0.268 1.794 0.417 0.307 1.516 0.297 0.426 2.056 0.710 0.714
avg 0.051 0.028 0.029 0.059 0.031 0.033 0.460 0.073 0.077 0.190 0.091 0.088
σ 0.053 0.026 0.030 0.087 0.039 0.038 0.309 0.054 0.059 0.202 0.074 0.077
rmse 0.074 0.039 0.041 0.105 0.050 0.051 0.554 0.091 0.097 0.277 0.117 0.118

feat. reject. rate - 0.736 0.890 - 0.845 0.840 - 0.858 0.671 - 0.836 0.633

conditions on a public road. Fig. 6 shows the trajectories of
both localization methods and the content of the feature map
with underlying aerial imagery. We tested the feature localiza-
tion with two different LiDAR sensor setups with and without
fusing the IMU data, the wheel odometry was always used.
The first LiDAR setup was using Velodyne HDL-64E, which
has 64 beams with a vertical resolution of about 0.4◦ and
an horizontal resolution of 0.08◦. The feature detection and
tracking was performed as stated in sec. III. The second setup
was an array of six Ibeo Lux 4L LiDARs, which are mounted
in the bumpers of the car. These LiDARs have 4 beams and
resolutions of 0.8◦ vertical and 0.25◦ horizontal with an FoV
of 110◦ × 3.2◦. The laser firing direction is almost parallel
to the ground, which results in a higher effective detection
range compared to the HDL-64E, but the low mounting height
leads to a higher chance of occlusion. The Ibeo Lux sensors
are combined with a proprietary Ibeo fusion and tracking
module that has access to the vehicle’s CAN odometry data
and fuses the point clouds of the sensors and offers an obstacle
detection, tracking and classification. We replaced our feature
detection and tracking algorithm with the proprietary Ibeo
module for the experiments with the Ibeo sensors. Since the
module is not capable of classifying poles, walls or corners,
we resorted to feed all detected static objects as pole features
to the fingerprint matching module. Additionally to the lateral
localization error, the total count of tracked features along with
the count of successfully matched features and the rejection
rate is given in table I. For reference we provide the results
of the LIO-SAM [11] method performed on the same datasets
along with our results. LIO-SAM used the Velodyne HDL-
64E, GNSS and IMU data but not CAN odometry data for
the localization. We also set the downsample rate parameter
to 2 as suggested by the authors for the Kitty dataset which
uses the same LiDAR model. Unfortunately, the LiDAR and
IMU sensor clocks are not perfectly synchronized in our
dataset, which might lead to a slightly degraded performance.
Nonetheless the results are comparable since all methods
operated under the same conditions. The results show that
all methods are capable of localizing the vehicle with a high
degree of accuracy in the parking lot scenario. Compared to the
parking lot the localization methods show a worse performance
in the more challenging urban scenario, especially the GNSS,
which suffers from multipath reflections. Regarding the sensor
setups, the Velodyne HDL-64E paired with the IMU delivers
the best results but nonetheless the results of the Ibeo Lux

sensors are impressive considering the lower resolution. For
a further evaluation of the impact of the resolution on the
accuracy an ablation study was performed (table II), where
only every second or fourth beam of the Velodyne HDL-64E
was used, which halves or quarters the vertical resolution.
In order to maximize the impact of the reduced resolution,
the IMU was not fused for the ablation study. The ablation
study shows that a lower vertical resolution leads to a worse
localization performance. With every second beam used, the
accuracy is still high in both scenarios but if only every
fourth beam is used (16 beams total) the detection range
suffers, which leads to less detected features and a significantly
reduced localization accuracy. Due to the lower feature count,
the matching runtime improved to 33.8 ms for 32 beams and
21.8 ms for 16 beams (measured on an Intel Xeon E3-1221).
Depending on the scenario and sensor, the rejection rate can
increase or decrease but we could not determine a simple
causal relationship between sensor resolution and the rejection
rate. Further investigation is needed to find the factors which
fully explain the rejection rate’s behavior.

VII. CONCLUSIONS

We presented a novel feature matching and localization
approach using geometric fingerprinting. The results of the ex-
periments provide proof of the good performance in different
scenarios. The fingerprinting algorithm solves the association
problem robustly and with high accuracy (avg. 7.3 cm lateral
error) in real world scenarios. The initial pose estimate does
not need to be highly accurate, which makes this localization
technique independent of expensive GNSS receivers. The
feature maps can be generated from freely available data and
do not need to be perfectly accurate or up to date. Missing or
additional features have no significant impact on the matching
performance. The execution time amounts to 44.7 ms per
360◦ point cloud on an Intel Xeon E3-1221 (9.1 ms feature

TABLE II
ABLATION STUDY ON THE VERTICAL LIDAR RESOLUTION WITHOUT IMU

parking lot urban street

lat. error (m) 32 beams 16 beams 32 beams 16 beams

max 0.749 0.638 0.533 1.055
avg 0.039 0.044 0.095 0.127
σ 0.060 0.066 0.082 0.125
rmse 0.071 0.079 0.126 0.178

feat. reject. rate 0.870 0.646 0.876 0.794

STEINKE et al.: LIDAR FEATURE FINGERPRINT LOCALIZATION 7

detection, 35.6 ms matching). The feature maps can be large
scale, spanning several square kilometers and containing tens
of thousands of features. In this article we exclusively used
LiDAR sensors but the algorithm itself is not bound to any
type of sensor. Hence it is possible to use other sensor types,
like stereo-cameras or mono-cameras combined with a depth
estimation. Since the features are represented as edges and
vertices, lane lines and curbs can easily be added for additional
accuracy benefits.

REFERENCES

[1] C. Brenner, “Global localization of vehicles using local pole patterns”. In
Proceedings of Joint Pattern Recognition Symposium”, 5748, pp. 61—
70, Sep. 2009.

[2] X. Chen, T. Läbe, L. Nardi, J. Behley and C. Stachniss, “Learning
an Overlap-based Observation Model for 3D LiDAR Localization”, In
Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4602-4608, Oct. 2020.

[3] P. Elinas, and J. Little. “σMCL: Monte-Carlo Localization for Mobile
Robots with Stereo Vision”. In Robotics: Science and Systems, pp. 373-
380, June 2005.

[4] D. Holz, A. E. Ichim, F. Tombari, R. B. Rusu and S. Behnke, “Registra-
tion with the point cloud library: A modular framework for aligning in
3-D”. In IEEE Robotics & Automation Magazine, 22(4), pp. 110-124,
Dec. 2015.

[5] W. C. Ma, I. Tartavull, I. A. Bârsan, S. Wang, M. Bai, G. Mattyus, N.
Homayounfar, S. K. Lakshmikanth, A. Pokrovsky and R. Urtasun, “Ex-
ploiting sparse semantic HD maps for self-driving vehicle localization”.
In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) 2019, pp. 5304-5311, Aug. 2019.

[6] T. Röfer and M. Jüngel, “Vision-Based Fast and Reactive Monte-Carlo
Localization”. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 856-861, Sept. 2003.

[7] A. Schäfer, D. Büscher, J. Vertens, L. Luft and W. Burgard, “Long-Term
Urban Vehicle Localization Using Pole Landmarks Extracted from 3-D
Lidar Scans”. In Proceedings of the European Conference on Mobile
Robots (ECMR), pp. 1-7, Oct. 2019.

[8] A. Schlichting and C. Brenner, “Localization using automotive laser
scanners and local pattern matching”. In Proceedings of the IEEE
Intelligent Vehicles Symposium 2014, pp. 414–419, June 2014.

[9] M. Sefati, M. Daum, B. Sondermann, K. D. Kreiskother and A.
Kampker, “Improving vehicle localization using semantic and pole-like
landmarks”. In Proceedings of the IEEE Intelligent Vehicles Symposium
(IV) 2017, pp. 13–19, June 2017.

[10] Senatsverwaltung für Stadtentwicklung und Wohnen, Geoportal Berlin /
“Digitale farbige Orthophotos 2019 (DOP20RGB)”, “Straßenbefahrung
2014”. online, https://www.stadtentwicklung.berlin.de/geoinformation/.

[11] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti and D. Rus, “LIO-
SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and
Mapping”. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 5135-5142, Oct. 2020.

[12] R. Spangenberg, D. Göhring and R. Rojas, “Pole-Based Localization
for Autonomous Vehicles in Urban Scenarios”. In Proceedings of the
IEEE/RSJ International Conference of Intelligent Robots and Systems
(IROS), pp. 2161-2166, Oct. 2016.

[13] C. Stachniss and W. Burgard, “Mobile Robot Mapping and Localization
in Non-Static Environments”. In Proceedings of the Twentieth National
Conference on Artificial Intelligence, pp. 1324-1329, July 2005.

[14] S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox, D.
Haehnel, C. Rosenberg, N. Roy, J. Schulte and D. Schulte, “MINERVA:
A Second-Generation Museum Tour-Guide Robot”. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA)
1999, pp. 1999-2005, May 1999.

[15] Y. Wang, L. Huang and W. Yang, “A Novel Real-Time Coal Miner
Localization and Tracking System Based on Self-Organized Sensor
Networks”. In EURASIP Journal on Wireless Communications and
Networking, 2010, pp. 1-14, July 2010.

[16] L. Weng, M. Yang, L. Guo, B. Wang and C. Wang, “Pole-based realtime
localization for autonomous driving in congested urban scenarios”.
In Proceedings of the IEEE International Conference on Real-time
Computing and Robotics (RCAR) 2018, pp. 96-101, Aug. 2018. Fig. 6. Comparison of trajectory with feature localization and GNSS local-

ization. (Coordinates are in UTM zone 33N, data and satellite imagery: [10]

	INTRODUCTION
	RELATED WORK
	FEATURE DETECTION AND TRACKING
	General feature detection considerations
	Detection of pole features
	Detection of wall and corner features
	Feature tracking

	FEATURE FINGERPRINTING
	Geometric fingerprints of point features
	Geometric fingerprints of edge features
	Apriori map creation and storage

	FEATURE RECOGNITION AND LOCALIZATION
	EXPERIMENTS AND EVALUATION
	CONCLUSIONS
	References

