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Abstract— Despite the advances in robotics a large proportion
of the of parts handling tasks in the automotive industry’s
internal logistics are not automated but still performed by
humans. A key component to competitively automate these
processes is a 6D pose estimation that can handle a large
number of different parts, is adaptable to new parts with
little manual effort, and is sufficiently accurate and robust
with respect to industry requirements. In this context, the
question arises as to the current status quo with respect to
these measures. To address this we built a representative 6D
pose estimation pipeline with state-of-the-art components from
economically scalable real to synthetic data generation to pose
estimators and evaluated it on automotive parts with regards
to a realistic sequencing process. We found that using the
data generation approaches, the performance of the trained
6D pose estimators are promising, but do not meet industry
requirements. We reveal that the reason for this is the inability
of the estimators to provide reliable uncertainties for their
poses, rather than the ability of to provide sufficiently accurate
poses. In this context we further analyzed how RGB- and RGB-
D-based approaches compare against this background and show
that they are differently vulnerable to the domain gap induced
by synthetic data.

I. INTRODUCTION
Despite the current advances in robotics and artificial

intelligence a large proportion of processes in the internal
logistics of the automotive industry are still carried out
by humans. This especially concerns, but is not limited
to, the process of parts sequencing for the assembly line.
The essential cognitive task which is performed by humans
to accomplish this process is the visual recognition that
enables the picking and placing of automotive parts. The
requirements for a 6D pose estimation system to compet-
itively enable a robot to perform these tasks instead, are
exceptionally high. On the one hand, this is due to the
high number of different parts combined with -in the robotic
sense- highly unstructured environments. On the other hand,
this results from the need for short cycle times combined with
near-optimal availability that leaves no room for robot errors,
such as robotic crashes. This requires from the 6D pose
estimation system to not only be fast, effortless maintainable
and scaleable to this large number of different parts, but also
to be robust against occlusions and erroneous sensor data.

Against this background the recent advances of neural
networks in the field of 6D pose estimation, are promising
to solve the above challenges. Current leading approaches
are nowadays mainly based on neural networks and outper-
form traditional approaches [1]. Together with the developed
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Fig. 1. Automotive antenna covers (left) and interior handles (right) in
storage containers, that enforce structured and unstructured positions.

frameworks to easily generate real-world [2] and theoret-
ically unlimited synthetic [3] training data, this may have
the potential to competitively enable the automation of the
internal logistics. Therefore the question to current state of
a 6D pose estimation pipeline applied the internal logistics
in industry arises. Despite the various recent works in the
fields of data generation and 6D pose estimation, there is
to the best of our knowledge, no work which applies a full
integrative pipeline of these blocks with such a focus.

Therefore we aim to deepen the insights on this topic
with building blocks from data generation to 6D pose es-
timation on exemplary automotive parts. To this end, we
build a pipeline consisting out of three main state-of-the-art
building blocks. One block for real-world data generation
which implements LabelFusion [2], one block for synthetic
data generation which applies NVISII [3] and one block
for the 6D pose estimation itself. The 6D pose estimation
block implements the state-of-the-art RGB-based approach
GDR-Net [4] and the RGB-D-based approach DenseFusion
[5]. We applied the pipeline to two exemplary automotive
parts shown in Fig. 1, namely: antenna covers (antennas),
which are supposed to represent rather difficult parts due
to their their geometric and visual properties, and interior
handles (handles), which are supposed to represent rather
simple parts. To evaluate the pipeline with respect to industry
requirements, we conducted experiments on the generated
data sets together with robotic grasp and place tests on a
representative sequencing process.

We found that using the data generation approaches, the
performance of the trained 6D pose estimators is promising



in terms of scalability, but does not meet industry require-
ments in terms of robustness. We show that the reason for
this is the inability of the estimators to provide a reliable
uncertainty measure, rather than the ability to provide suffi-
ciently accurate poses. Furthermore, we observe that in the
case of the RGB-D-based estimator, despite its reliance on
neural networks, it is not robust to slightly erroneous depth
data, and we infer that the circumstance of not having depth
data in the case of the RGB-based estimator significantly
amplifies the domain gap on the distance estimate.

II. RELATED WORK

To the best of our knowledge, there is no direct comparable
work, which evaluates a pipeline from data generation to 6D
pose estimation on automotive parts in terms of feasibility
and scalability with respect to industry requirements. There-
fore, we discuss the works which are directly relevant for
the building blocks of our pipeline.

A. Real-World Data Generation

The majority of the work towards methods for real-world
data generation is contained in the publications of the several
established data sets [6]–[10], which were created to evaluate
and benchmark 6D pose estimators. A core approach among
these works is to arrange the target objects in a static scene.
Then either the sensor setup [6], [8], [9] or the static scene
[7] is moved to generate samples from different viewpoints.
Subsequently, the 6D poses of the target objects are either
annotated in one sample [7], [8], [10] or in a 3D reconstruc-
tion [6], [9] of the scene and transferred to all samples via
estimation, geometric relations or by a combination of both.
This strategy to transfer one annotation to all samples in a
static scene, enables the annotation of large datasets with
only little human effort.

However, these works focus on the properties of the data
sets and the evaluation of 6D pose estimators and less on
their data generating methods. As a consequence they often
do not contain detailed descriptions of these methods and
the source code is not published or not completely open
source as in case of [9]. In contrast to that LabelFusion
[2] is open source and targets the data generation for 6D
pose estimation in terms of practicability and scalability. It
also follows the approach of static scenes in combination
with a 3D reconstruction. As an improvement to [6], [9] it
further does not require markers in the scene, which enables
a high freedom for scene generation. Therefore, we decided
for LabelFusion as our pipeline building block for real-world
data generation.

B. Synthetic Data Generation

The main challenge of synthetic data generation is to
effectively bridge the domain gap so that 6D pose estimators
trained on synthetic data perform equally well on real-
world data. To address this challenge two complementary
approaches have emerged. One is domain randomization
[11], which aims to strongly randomize synthetic data, such
as textures, backgrounds, lighting conditions, etc., so that

real-world data simply represents another of these variations
to the trained models. The other is to generate photorealistic
data, so that the deviation of the synthetic from the real
domain becomes minimal.

In this context, [12]–[14] pursued the so-called ”render
& paste” approach [1], which renders objects in combi-
nation with domain randomization techniques in front of
random real photographs, achieving promising results. The
main difference between these works is that [12], [13]
used a rasterization-based renderer (RBR) and [14] used a
physically-based renderer (PBR). The difference is that a
PBR can accurately simulate the path of light through ray
tracing, while a RBR approximates the path of light through
rasterization. In consequence, a PBR enables physically-
plausible domain randomization techniques, taking into ac-
count material properties and light interactions between ob-
jects, whereas a RBR is limited to approximated light effects
and image-based domain randomization as for example ran-
domized image contrasts [15]. Against this background the
BOP challenge of 2020 [1] showed that domain randomized
PBR images of objects simulated in an 3D cube, representing
lightweight photorealistic scenes, improved the results on 6D
pose estimation compared to RBR ”paste & render” images
by large margins. Related to that DOPE [16], which was
entirely trained on PBR ”paste & render” images and fully
PBR photorealistic indoor and outdoor scenes, achieved on
par results on the established real-world YCB-V data set [8]
with 6D pose estimators trained on real data. It was shown
that both of these synthetic data generating approaches were
essential to reach these results.

With regard to this, the domain randomized PBR approach
of the BOP challenge to generate lightweight photorealistic
scenes is a good compromise in terms of scalability, as it
improves on the ”paste & render” approach but does not
go along with the high effort to generate full photorealistic
scenes. Therefore, we explore further on this approach.

C. 6D Pose Estimation

6D pose estimation is nowadays mostly lead by deep
learning based estimators. Among these, the current leading
ones can be subdivided into those rely solely on RGB
images, or additionally use depth information from an RGB-
D camera. [17]

1) RGB-based: Deep learning based RGB 6D pose esti-
mators can be divided into direct, correspondence, or implicit
representation based estimators. Direct estimators [8], [18]
take the RGB image as an input and directly estimate a
fixed 6D pose representation via a CNN architecture. A
disadvantage of these methods is that they tend to suffer from
difficulties during the learning process in case of existent
pose ambiguities [13]. Correspondence based methods esti-
mate the corresponding coordinates of either sparse [16] or
dense keypoints [19], [20] of the target object and the object
model to then retrieve the 6D pose via a perspective-n-point
algorithm. This decouples the learning process from the fixed
6D pose representation and additionally allows the possibility
to compute multiple pose hypotheses in case of uncertainty.



Implicit representations based methods use the object model
to render it at different poses to generate a comprehensive
pose-view mapping. Later at runtime the actual pose is then
determined by a match of the present view to the pose-view
mapping via a latent space representation generated by an
autoencoder [13]. The advantage of this approach is, that it
does not need ground truth pose annotations for training and
is not suffering from pose ambiguities.

In this context, the leading RGB-based estimator on the
BOP challenge 2022 [17] is GDR-Net [4], which combines
and unifies the correspondence with direct approach. It even
surpasses RGB-D-based estimators on the challenge, and
therefore, we chose it as our RGB-based estimator.

2) RGB-D-based: Leading RGB-D based approaches can
be divided into deep learning approaches that are extended
by classical approaches, pure classical approaches or pure
deep learning approaches. The former of these make use of
the additional depth information by taking an initial 6D pose
of an RGB-based estimator and refine this pose by e.g. an
iterative closest point (ICP) algoritm [8], [13] or by compar-
ing distances as in the fast version of GDRNPP [21]. A pure
classical approach, which dominated the BOP challenge until
recently, is based on the matching of the observed and model
point cloud via point pair features [22]. However, a strong
drawback of using depth with classical approaches is that
they rely on high quality depth information and suffer from
erroneous depth values, which are particularly prevalent on
reflective surfaces as on the antenna. Against this background
pure deep learning approaches process RGB and depth infor-
mation jointly via a deep neural network to either estimate
the 6D pose directly [5] or via correspondences [23], [24].
The joint learning-based approach promises to be capable to
leverage the information of both modalities, while handling
low-quality depth information, but still making use of it.

For this reason, and for the reason that [23], [24] are
not straightforwardly multi-object multi-instance-per-class
capable, we decided for the well established direct approach
DenseFusion [5] of this class, which additionally fulfills the
requirement of a fast inference time.

III. 6D POSE ESTIMATION PIPELINE

Following section II our pipeline consists out of three
state-of the-art building blocks for 6D pose estimation for
rigid and known objects. One block for real-world data
generation which implements LabelFusion [2] that serves
as an highly automated generator for training, evaluation
and test data. One block for synthetic data generation which
applies NVISII [3] and serves as a generator for unlimited
synthetic training and validation data and one block for
the 6D pose estimation itself. For the 6D pose estimation
block we selected GDR-Net [4] and DenseFusion (DF) [5]
as they reflect leading concepts of RGB- and RGB-D-based
6D pose estimators. To acquire the RGB and RGB-D images,
we have selected the low-budget Framos D435e camera, an
industrialized version of the Intel Realsense D435. In doing
so, we cover representative and well established state-of-the-
art data generation and RGB- and RGB-D-based 6D pose
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Fig. 2. Representative robotic setup for a automotive sequencing process
showing antennas on a conveyor belt in front of a UR10 with a two finger
gripper and a Framos camera mounted on the end effector. Left to the
conveyor belt is the target sequence container.

estimation approaches.

A. Real-World Data Generation

To generate annotated ground truth real-world data we use
LabelFusion in combination with a partial automated scene
recording. In order to create representative data we generate
scenes, which are similar to sequencing for an automotive
assembly line.

In detail, we mount the camera on the end effector of
a robotic arm as shown in Fig. 2. Then for each scene
we randomly place a storage container, containing randomly
arranged objects of one type, on a conveyor belt in front
of the robotic-camera setup. To annotate a scene we let the
camera move along a predefined trajectory to collect RGB-
D samples from different viewpoints. Given these samples,
LabelFusion creates a 3D reconstruction of the scene while
simultaneously estimating the camera pose for each sample.
In the next step the target objects in the 3D reconstruction
are aligned with their corresponding models meshes through
a human assisted ICP-fitting. Given the alignment, for each
sample bounding boxes, masks and 6D poses are automati-
cally retrieved, resulting in the annotation of the whole scene.

This procedure enables us to quickly annotate large
amounts of data. Furthermore, the usage of predefined in-
stead of hand-held trajectories ensures reproducible results
and enables cycles for iterative improvement.

B. Synthetic Data Generation

To generate the lightweight photorealistic scenes as de-
scribed in II-B, we use NVISII which is an open-source PBR
renderer based on Nvidia’s OptiX ray tracing engine [3].

Specifically, we create two types of such scenes. In the
first, we spawn the part’s meshes in a random position on a
physical floor, so that they have the same face up as in the
real sequencing process. This is meant to represent simple
scenes to get the model’s learning process going in the right
direction and to force a strong prior on this likely pose.
In the second, we spawn the part’s meshes together with
distractor objects in a random position above the physical
floor and let them fall onto it. This way we get a scene
with all kinds of poses and occlusions to further improve
the model’s generalization capability.



For both scenes the parts color, texture and material
properties are varied, so that we obtain a mixture of parts
with a strong randomized appearance and parts with an
appearance similar to that of the real world. In addition,
we randomize the floors appearance and the main scenes
illumination texture with HDRI images and images from
ImageNet [25]. Besides the main illumination, we also add
a random amount of spotlights at random positions. Given
these scenes, RGB-D images are rendered from the perspec-
tive of a virtual camera, whose position varies randomly
between different frames. Exemplary rendered images of
these scenes are displayed in Fig. 3. Finally, annotations in
the form of ground truth poses, masks and bounding boxes
are retrieved for each camera. Given this pipeline, unlimited
domain randomized lightweight photorealistic data can be
generated, while no additional personnel effort is needed.

C. 6D Pose Estimation

For both, DF and GDR-Net we adhere to the architectures
and specifications used in the original publications [4], [5].
For the required detection block of both estimators, we utilize
Mask R-CNN [26] following [14], [18].

IV. EXPERIMENTS

In the experiment section, we evaluate our pipeline on rep-
resentative parts of the sequencing process of an automotive
assembly line. To do so, we have chosen two common parts
of this process, namely antennas and handles, displayed in
Fig. 1. In this context the antenna, represents a difficult part
as it is highly reflective and has no distinctive textures. The
handles on the other hand, represent a rather simple part.
Given these parts we applied our pipeline and conducted
tests on collected data as well as on a robotic setup to
examine the following questions: (1) What is the accuracy
and robustness that we can reach and how does this compare
to the requirements for an industrial deployment? (2) How
high is the human effort, is real data still needed, or is our
lightweight approach for generating synthetic data already
sufficient? (3) How do the selected RGB- and RGB-D-based
pose estimation approaches compare in this context?

A. Metrics

For the evaluation of the pose estimators on the data sets,
we want a practical pose error function that indicates with a
high likelihood the chance of a successful grasp to enable a
detailed analysis with respect to process requirements.

As like the antennas and handles, the vast majority of
automotive parts in the sequencing process are symmetry-
ambiguity-invariant. Therefore, we follow [7] to use a pose
error function that computes the maximum distance error
dP (MDE) between corresponding points in homogeneous
coordinates x of the model M in annotated ground truth
pose P̄ and estimated pose P̂ as

dP (P̄, P̂;M) = max
x∈M
‖P̄x− P̂x‖2 (1)

where a pose is defined as a homogeneous transformation
matrix P = [R | t] ∈ SE(3), consisting of a rotation matrix

R ∈ SO(3) and a translation vector t ∈ R3. In doing so,
we enable a practical but conservative determination of a
single threshold towards a successful grasp for a wide range
of grippers.

Based on this, we can calculate performance scores for
industrial requirements. In our case we must avoid false pos-
itives (FP), as they can lead to robotic crashes and damaged
parts. Therefore, we are interested in the precision score.
Furthermore, we need also take measure on false negatives
(FNs) as they lead to longer process times and can make a
pose estimator impractical. Thus, we are also interested in the
recall score. To this end we calculate the average precision
(AP) and average recall (AR) for N samples as

AP =
1

N

N∑
n=1

TPn

TPn + FPn
(2)

AR =
1

N

N∑
n=1

TPn

TPn + FNn
(3)

where TPn, FPn and FNn are the number of the true
positives (TPs), FPs and FNs in a sample n, respectively.

To compute these scores we match all pose estimations
of a sample n to the ground truth (GT) annotations in
increasing order of the corresponding maximum distance
error dP , while every estimation can only be matched once
but every GT multiple times. All matched estimations whose
dP error is smaller or equal to an error threshold θp are
counted as a TP and a FP otherwise. From all GTs, only
GTs that do not have a TP match and have a visibility ratio
v of a corresponding object in a sample greater or equal to
a visibility threshold θv , are counted as FP. The reasoning
behind this is that in our case we do not have partial visibility
due to occlusion but only due to process dependent field
of view (FoV) restrictions. Therefore, we do not want to
penalize missing estimations for objects, for which it is not
intended to predict poses for, as the visible part of such
objects may not even contain enough information for an
optimal 6D pose estimator. Nevertheless, if the estimator
provides a pose for such an object, its error has to be smaller
or equal to the error threshold otherwise it is counted as a
FP. In this context we set the θv = 0.85, as we require from
the process to enable such a visibility and the error threshold
θp = 1.5 cm, as this should be the upper limit for a successful
grasp for a wide variety of part-gripper combinations.

B. Datasets

1) Real-World Data: Using our real-world data pipeline
we generated a data set for each part. We collected the RGB-
D images with a resolution of 848x480 pixels, which is
the resolution of the Framos to achieve the highest depth
quality. For each part we decided to collect 30 scenes at the
heights around of 30 cm, 10 scenes 50 cm and 10 scenes
80 cm above the storage container. The height of 30 cm is
intended to serve as a distance from which the 6D pose for
the grasping will be estimated and therefore makes up the
majority of the collected scenes. This height is the minimal
distance at which the complete storage container is still in



Fig. 3. Exemplary rendered images showing from the left to right right: First scene and second scene type antennas, first and second scene type handles.

TABLE I
DATASET VARIANTS PER PART

Name Train Validation Test
R 80k real img. 25k real img.
S 50k synth. img 10k synth. img. 25k real img.

R-S R Train + S Train R Val. + S Val.

the FoV and provides a sufficient margin for successful depth
images acquisition. The heights of 50 and 80 cm are intended
to make the estimators robust against height variations. We
divided the total of 50 scenes for each part into 30 training
scenes with about 80k images, 10 validation and 10 test
scenes with about 25k images each. Each dataset could be
generated by one person in about 4 days.

2) Synthetic Data: Using our synthetic data pipeline, we
generated 25,000 annotated training and 5,000 validation
images for each scene type and part. This results in a total of
50,000 training and 10,000 validation images for each part,
which is very similar to the seizes in [1], [16]. The distance
of the camera to the target parts was chosen to be similar
to the real data, with a distance between 30 and 80 cm.
The scenes themselves contain randomly up to 10 distractors,
spotlights and target parts each. Example images of the data
sets are shown in Fig. 3.

3) Dataset Variants: In order to evaluate our research
questions, we created a real world (R), a synthetic (S) and a
combined data set (R-S) for each part as specified in Tab. I.

C. Implementation and Training Details

To train Mask R-CNN, we use a pre-trained ResNet-50.
For the training of DF, we used the same training hyper-
parameters as in the original publication with 2 refinement
iterations and a refinement threshold of 8 mm, but with a pre-
trained instead of an untrained ResNet-18. For GDR-Net,
we also used the same hyperparameters as in the original
publication, but excluded the built-in data augmentation, as
we want to compare both estimators on the same data set.

Furthermore, for both 6D pose estimators, we excluded
annotations in the training and validation parts of the data
sets of objects that do not exceed a visibility of θv = 0.3,
as we observed that lower thresholds worsen the results.
Moreover, we trained and validated on the GT instead
on inferred detections, as we observed better results when
testing such models with inferred detections on the test set.

D. Results on Dataset Variants

1) Instance Segmentation: The results for the trained
Mask R-CNNs evaluated on the test set are shown in Table II.

TABLE II
MASK R-CNN RESULTS

Object Dataset AP50:95(%) AP50(%) AR100

R 85.2 99.0 89.0
Antenna S 39.5 55.8 44.1

R-S 85.7 99.0 89.8
R 73.5 99.0 78.5

Handle S 63.8 96.1 68.5
R-S 75.3 98.9 78.9

TABLE III
AVG. PRECISION & AVG. RECALL DATASET RESULTS

Object Method R S R-S
AP AR AP AR AP AR

Antenna DF
GDR

95.2
77.4

89.3
96.3

70.8
73.0

28.7
40.9

96.6
78.6

92.7
97.2

Handle DF
GDR

97.7
82.6

91.6
95.3

96.3
29.4

41.5
37.3

99.5
86.6

92.8
98.4

The results are given in percentage for AP50(%) (the average
precision at IoU 50 %), AP50:95(%) and AR100 (the average
recall for at maximum 100 detections per image). It can be
concluded that both the models trained on real data and the
model trained on real and synthetic data combined reach state
of the art scores. The model trained on synthetic data only,
do not, especially the version for the antenna.

2) 6D Pose Estimation: For the evaluation of the trained
6D pose estimation models, we used the inferred detections
from the Mask R-CNNs of the same data variant. Further-
more, we used the possibility that DF provides confidences
c ∈ [0, 1] [5] as an uncertainty measure for its estimation,
whereas GDR-Net does not. Unless otherwise specified, we
have chosen the confidences for DF so that the AP (2) is
maximized, but at maximum to c = 0.95, as we want to
prevent robotic crashes. The confidences for the DF models
for the Antenna/Handle models were set to R: 0.95/0.8, S:
0.5/0.7, R-S: 0.95/0.95.

In Tab. III we tabulate the AP (2) and AR (3) scores in
% for the different DF and GDR-Net models. The result
show that especially the DF models that included real data
in the training are close to an optimal AP of 1 and perform
in that term better than the GDR-Net counterpart. Neverthe-
less, despite that DF provides confidences as an uncertainty
measure to adapt the AP there is no model that reaches an
optimal AP. Additionally, it can be seen that the GDR-Net
predominantly achieves higher AR values, which was to be
expected since the poses were not filtered by an uncertainty
measure. But again, despite the visibility constraint, optimal
AR values are not achieved. Remarkable is the near optimal



Fig. 4. Violine plots of the MDE on the test set for the different models on
a logarithmic axis. The results for the antenna are shown in red and for the
handle in blue. The white dots represent the location of the median and the
black bars indicate the location of the lower and upper quartiles, enclosing
75 % of the data. The vertical dotted line shows the error threshold θp of
0.015 m. The x-axis is limited from 0.5 mm to 0.3 m.

TABLE IV
ADD ERROR COMPONENTS

Antenna Handle
DF GDR DF GDR

x s x s x s x s

R
x
y
z

2.41
2.81
3.10

1.73
2.21
2.43

7.57
6.03
16.4

27.4
19.3
64.1

2.41
2.12
2.04

2.40
1.95
1.23

7.70
6.04
14.2

23.5
21.2
51.9

S
x
y
z

9.45
7.21
16.3

134
64.2
385

5.02
4.93
14.0

12.9
11.3
41.5

1.84
1.74
4.75

1.41
1.10
1.82

7.20
7.22
24.9

21.7
25.5
77.7

AP of the DF model trained only with synthetic data on the
handle and the generally high scores of the synthetic models
with the exception of the GDR-Net on the handle.

To additionally analyze the distribution of the models
MDE’s we complement the AP and AR scores with a
violin plot in Fig. 4. The plot shows that most models have
the majority of their MDEs below the critical threshold of
θp = 0.015 m. Furthermore, it is noteworthy that for the
antenna the synthetic model of GDR-Net and for the handle
the synthetic model of DF, have similar MDE distributions
compared to their real counterparts. However, it is noticeable
that all models have quite high MDE outliers and even the
best performing model has outliers up to 4 cm.

Furthermore, we tabulate the mean and standard deviation
of the x-,y- and z-error components of the ADD error in mm
[27] in Tab. IV to enable an analysis of the error sources.
Note that in this table a comparison between the real and
synthetic data models need to be done with caution, as they
had a different detection input and are therefore not evaluated
on the same set of instances.

To additionally enable a more in depth analysis of the
confidence variable of DF, we display the AP and AR curves
over a confidence interval c ∈ [0, 1) for each DF model in
Fig. 5. The curves show that the models have a low sensitivity

TABLE V
AVG. PRECISION & AVG. RECALL ROBOTIC EXPERIMENT RESULTS

Object Method R S R-S
AP AR AP AR AP AR

Antenna DF
GDR

100
100

87.5
100

60.8
87.1

52.5
85.0

100
97.5

100
97.5

Handle DF
GDR

100
97.5

97.5
87.5

97.5
0.00

92.5
0.00

100
80.0

95.0
60.0

of the AR and AP scores with respect to the confidence. In
particular, the AP course has mostly constant or occasionally
even lower scores for higher confidence values and no
optimal AP can be set. This problem is particularly evident
for the models trained on synthetic data.

E. Experiments on Robotic Grasping Setup

To evaluate how the models would perform in a real
sequencing process, we performed tests on the robotic setup
of Fig. 2 with a two-finger gripper that is capable of grasping
both parts, and is relatively robust to pose inaccuracies. To
conduct the experiments, we placed a randomly oriented
storage container containing randomly arranged parts of one
type on a conveyor belt in front of the robotic setup. The goal
was then to sequentially pick all parts in the storage container
and place them in a nearby sequence container, where for
each attempt a new image of the scene was acquired. To
do this, the robot performed a search movement so that the
entire area of the conveyor belt was successively within the
FoV of the camera. To have equal conditions, each model
was tested on the same set of 5 randomly prepared scenes
per part, where each scene contained 8 parts.

As the experiments offer the opportunity to make the AP
and AR scores more meaningful for evaluating a deployment,
we deviated from the definition of TP, FP and FN of the data
set evaluation. Specifically, we counted an attempt as a TP if
the robot managed to place a part in the sequence container.
The slot position in this container was hard-coded, and to
account for acceptable inaccuracies, the slot was chosen to
be 20 mm larger in x and y directions than the maximum
x and y dimensions of the respective parts in the intended
placement position. An attempt was counted as a FP, if it lead
to a crash or to an unsuccessful placement. We removed each
part after it caused a crash so a FP could only be counted
once per part. A FN was counted for each part that remained
in the container after 160 seconds, which equals 20 seconds
per part and is a realistic assumption. The parts that were
removed because of a crash were counted as a FN.

We display the results of the experiment in Table V.
The results show that optimal AR and AP values could be
obtained for both parts with DF and GDR-Net. It should be
emphasized that the purely synthetically trained DF model
has nearly optimal values for the handles. In contrast, it
performs relatively poorly for the antennas. We observed
that this was especially the case when the depth images
were erroneous. Fig. 6 shows such an example from the
experiment. In contrast, GDR-Net trained on synthetic data
was much more robust on the antennas. However, the poor



Fig. 5. Average Precision and Average Recall of DF over a confidence intervall c ∈ [0, 1) for the Antenna on the left and the Handle on the right.

Erroneous
Depth

Fig. 6. RGB image with projected pose estimations of DF (red) and GDR
(blue) in the form of 3D bounding boxes with a scaled heatmap of the
corresponding depth image below. The wrongly estimated poses of DF on
the bottom left correspond to depth areas which have false depth values.

values of the synthetically trained GDR-Net for the handle
are particularly striking. Here, we observed that the poses
were generally estimated too high and the grab was reaching
into the void. In this context Tab. IV shows that the ADD
error on the z-coordinate for this synthetic model is 24.9
mm compared to 14.2 mm for the real counterpart, while
the errors on the x- and y-coordinate are in the same range.

V. DISCUSSION

Towards research question (1) we state that despite the
existing nearly optimal results in the robotic experiments
for both parts, it is questionable that these numbers would
hold for continuous industry operation, as no model in the
bigger data set achieved such results and Fig. 4 shows high
outliers. In particular, we conclude that industry requirements
are not met, especially in terms of robustness rather than
accuracy. The biggest issue in this context is the guarantee
of an optimal AP, as a measure of robustness, which, if not

adhered to, leads to robot crashes with damaged parts and
downtime. In our view, a major reason for not achieving
the optimal AP, is the inability of the models to provide a
reliable uncertainty measure rather than the ability to provide
sufficiently accurate poses. Fig. 4 in particular shows that
the majority of the estimated poses have a sufficiently small
error. This is also true for most models that have been trained
with synthetic data only. In this connection, DF provides a
confidence as an uncertainty measure, but the results show
that its properties are not sufficient to reliably meet an AP
of 1. GDR-Net, although leading the BOP challenge 2022
[17], is even worse, as it does not provide any uncertainty
at all. Without such, we conclude that a deployment is not
robust to unavoidable occlusions or erroneous sensor data.

However, independent of this issue we can state towards
research question (2) that the data set generation effort-
benefit relationship, is very promising in terms of economic
scalability. By using our pipeline, the real data sets could
be generated by one person in about 4 days each and with
our lightweight synthetic data approach, no further personnel
effort is needed. The results show that there is reasonable evi-
dence to assume that given an reliable uncertainty estimation,
the results achievable with the real data are sufficient for an
industrial deployment. Regarding the question if this would
also hold for the lightweight synthetic data approach, we
found that, despite the promising results, it depends on the
used estimator-data-modality combination (3).

In this context the example of the reflective antenna shows
that erroneous depth data leads to a large domain gap with
wrong poses, for the DF as the representative of an RGB-
D based approach. The GDR-Net, as a representative of an
RGB-based approach, that does not use such depth data,
performed significantly better in this case. On the other
hand, the missing depth makes the GDR-Net generally more
inaccurate on the distance estimate, which is likely to lead
to insufficient results, if the gripping point is intolerant
against such errors, which was the case for the handle in
combination with synthetic data. We assume that the domain
gap amplifies the disadvantage of an RGB-based estimator of
not using direct depth information. Against this background,
we suggest that the lightweight approach can be sufficient
with either an RGB-D or RGB-based approach for parts that
are not reflective, or if they are, a grab point must be available



that is tolerant of z-errors.
Note that the generalizability of the conclusion drawn

on our research question may be limited by the carefully
selected parts and estimators. Nevertheless, we are convinced
that the results provide valid insights into these questions.

VI. CONCLUSIONS

In this work, we evaluated a representative 6D pose
estimation pipeline to investigate the status quo of whether
automotive internal logistics can be competitively automated
by robots. In this context, we show that a major problem to
enable such a competitive automation is that the estimators
do not provide reliable uncertainties for their estimates.
Therefore, we suggest a strong focus of further research
on this property. Furthermore, we show that the selected
representative RGB approach is more robust than the se-
lected representative RGB-D approach when a domain gap is
caused by erroneous depth data. Since RGB is inherent to the
RGB-D approach, this implies that RGB-D approaches can
be significantly improved. This could be achieved by improv-
ing the network’s awareness of erroneous depth data, or by
incorporating such errors into the synthetic data generation
and training of the networks. Finally, this work demonstrates
the difficulties in transferring the promising scientific results
of 6D pose estimation to industrial use cases.
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