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Abstract—Due to dynamics, flexibility and diversity in logistics,
perception-controlled, intelligent robots are required to automate
logistical handling steps. Due to the additional optical influences
of the industrial environment, such as labeling or damage, these
applications seem predestined for the use of generalizing deep
neural networks (DNN). These showed continuous improvements
over the last few years based on publicly available data sets. If
these DNNs are re-trained based on training data from the in-
dustrial environment, a lower performance can be observed. The
additional extension of the experiments to international locations
of the vehicle plants also showed that a drop in performance
can be observed in the implementation of a network trained in
Germany, for example, when it is used in America. However,
in order to be able to use such robots in the logistic processes
in the future, further measures such as a revised composition
of training data or their extension by data augmentation are
proposed.

Index Terms—Object Detection, Deep Neural Networks, In-
dustrial Environment, Logistics Robotics

I. INTRODUCTION

Currently, the automotive industry is mainly characterized

by the strong rise in available part variants, a drop in vertical

manufacturing, and a globally growing supplier network. On

the one hand this has enabled a solid market position in the

volatile and highly competitive market, but on the other hand

it has lead to an increased complexity in the supply chain.

This has resulted in the logistics costs of a single part to be

higher than the pure production costs (15,5 % versus 24 %).

[6]

One way to reduce these costs is the holistic automation

of logistics processes. In comparison to the processes in

the building a car, logistics processes are characterized by

a flexible and dynamic environment with a very few stan-

dardization [7]. The implementation of classical automation

technology is therefore not feasible. However, autonomous and

intelligent robots which can adapt their tasks to the changing

environments may be used. What this means for the specific

application in an industrial environment, and the challenges

involved are shown in the paper using objection detection as

the example.

II. ACTUAL STATE ANALYSIS

Before focusing on algorithms for intelligent object-

detection, a deeper insight of the material flow in a high-

variant assembly line is given in this chapter. Subsequently,

the relevant objects - the container of the goods in the plant -

are analyzed in detail.

A. Material flow in high-variant assemblies

Logistics delivery concepts are divided into production-

synchronous and production-asynchronous approaches. In the

production-synchronous supply chain the parts, specially the

more expensive parts, are directly delivered in the right

sequence to the assembly line. In production-asynchronous

process the parts are delivered through various separations,

storages (AKL) and order pickings (SUMA). Also the ma-

jority of the necessary parts are still transported production-

asynchronous. This process chain is visualized in figure 1.

Fig. 1: Logistics Process Chain

In the production asynchronous approach, four completely

manual handling steps remain, if the transportation processes
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and already automated handling steps, like outsourcing con-

tainers from automated storages and the picking of single parts

are not considered. They are

• depalletizing full containers,

• providing full containers,

• collecting empty containers and

• palletizing empty containers.

In the perspective of automating these processes, the han-

dling steps vary mainly with regard to the different possible

degrees of freedom and different states of the containers. The

tasks and requirements for a holistic object-detection in the

material flow are discussed in the next section.

B. Container and container-characteristics in industrial envi-
ronments

The selection of containers takes place in the logistics

planning. A safe transport without any damages on the single

parts, as well as a very high packing density to reduce delivery

costs are the most important planning aspects. This leads to

a huge diversity of different containers in the plants. Figure

2 shows a typical example from the BMW Group’s plants

in Leipzig and Spartanburg. There are about ten containers

with a high share on the whole material flow, and the rest

of the approximate 400 container types have a share below

1 %. Additionally, the comparison of the two plants shows

that depending on the cars that are being produced (small

cars in Leipzig, bigger ones in Spartanburg), and on the

regional placement of the production sites, the appearance of

different container types can be differentiated even more. A

short overview of different container types is given in figure

3.

Fig. 2: Distribution of container variants in the material flow

In addition to the diversity, further deviations on the optics

of the containers among the different plants can be noticed.

Major influences are labels, dirt, damages and different light-

ening conditions. Those impacts are also shown in figure 4.

From the logistics processes, the objects, and the external

influences from the industrial environment, the requirements

for the object-detection algorithm and the application of the

robots can be derived.

III. REQUIREMENTS FOR OBJECT DETECTION SYSTEM

The basic task of object-detection in an industrial environ-

ment is the detection of containers that are placed in shelves

Fig. 3: Diversity of Containers

Fig. 4: Visual appearance of one container type in the logistics

environment

or on pallets. For deploying this solution to all automotive

production lines, the algorithm should be more than 99 %

reliable (A).

The location information of the containers from the detec-

tion is used by the robot to determine the specific gripping

point to fetch the containers one at a time. The quality of

the calculated gripping points is therefore dependent on the

detection accuracy of the containers. Therefore, the object

detection has to be as precise as possible (B).

In every automotive plant many different cars are built

that rely on different development cycles. Almost every week

new parts and new containers are added to the plants. Any

application for object detection has to be independent of those

continuous changes to reduce the amount of manually adapting

the applications to cope with the new additions and changes

(C).

The robotic systems are subjected to strict cycle times.

Those can vary depending on the plant and the process

between 30 and 60 seconds for a complete handling step.

The majority of this available time is needed for the phys-

ical movements. Accordingly the necessary time for object

detection should be as short as possible (1 second) (D).

Next to those functional requirements, the functionality

of the algorithms under different influences of the industrial

environment has to be guaranteed. Therefore, the application

should be function independent of factors mentioned below

(E).

• dirt,

• lightning conditions,
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• restricted field of views,

• labels and

• changing environments

IV. STATE OF THE ART

Considering the requirements and the current state of the

art, the application of deep learning is the ideal choice for the

problem.

A. Object Detection via Deep Neural Networks

Availability of data and acceleration in computing power

allows to quickly train different neural networks. Even more

importantly, the development of learning architectures was an

essential push in performance. In particular, since AlexNet

won the ILSVRC challenge in 2012 by a large margin,

convolutional neural networks (CNNs) became the state-of-

the-art approach for feature extraction from images. However,

ILSVRC is not the only challenge where the most efficient and

robust solutions emerged, also the other competitions shows

in (Table I) have created a platform for novel solutions for

object detection [8] [9] [10] [11] [12].

TABLE I: Object Detection Challenges

Name No. of Images No. of Classes
ILSVRC 450k 1000

MS COCO 120k 80
Pascal VOC 12k 20
CIFAR-10 60k 10

KITTI Vision 7k 3

Microsoft’s COCO dataset and Pascal VOC dataset are

also widely used by the open-source community to train

the networks for detection of common objects like person,

table, and so on. Nevertheless the use of these solutions for

industrial applications are constrained by the limited number

of training/testing samples and the dynamic nature of the

problem.

Figure 5 shows some of the current best performing open

source architectures using mean average precision (mAP) a

widely accepted metric for evaluating object detection algo-

rithms in the above mentioned challenges and the scientific

community. The figure also gives information regarding real

time performance through the metric of frames per second

(FPS). Using these information Faster R-CNN (Region-based

Convolutional Neural Networks), YOLO (You Only Look

Once) and SSD (Single Shot MultiBox Detector) were chosen

from the detectors shown in the figure. Recently published

RetinaNet algorithm was also added to the experiment due

to its unique approach towards solving the problem of imbal-

anced training data.

The chosen architectures can be divided into two categories:

- Two-stage detectors: Faster R-CNN

- One-stage detectors: YOLO, SSD, RetinaNet

Fig. 5: Comparison of Algorithms (Pascal VOC)

B. Two-stage Detectors

In the first stage of detection, such algorithms generate a

sparse set of candidate object locations, and in the second stage

they classify each candidate location as one of the foreground

classes or as background using a CNN.

In case of Faster R-CNN, proposals are generated with

Region Proposal Network (RPN). (Figure 6)

Fig. 6: Faster R-CNN Architecture

RPN is a small ConvNet (3x3 conv - 1x1 conv - 1x1 conv)

looking at the conv5 3 global feature volume in the sliding

window fashion. Each sliding window has 9 prior boxes that

relative to its receptive field (3 scales x 3 aspect ratios). RPN

does bounding box regression and box confidence scoring for

each prior box. The whole pipeline is trainable by combining

the loss of box regression, box confidence scoring, and object

classification into one common global objective function [2].

C. One-stage Detectors

As a further advancement of two-stage detectors, one-stage

detectors (also called single shot detectors) took over the per-

formance charts by their robustness (frames per second) and

accuracy rates relative to state-of-the-art two-stage methods

(Figure 5).
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YOLO models object detection as a regression problem

for bounding boxes and object class probabilities. It applies

a single pass through the CNN by dividing the input image

into a 7x7 grid. Each cell predicts a distribution over class

labels as well as a bounding box for the object whose center

falls into it (Figure 7). [3]

Fig. 7: You Only Look Once. Source: [3]

SSD takes advantage of the Faster R-CNNs RPN. It is used

to classify an object inside each prior box instead of just

scoring the object confidence (similar to YOLO). The diversity

of prior boxes resolutions is improved by running the RPN on

multiple conv layers at different depth levels [4].

RetinaNet addresses the problem with class imbalance as

the primary obstacle which prevents one-stage object detectors

from surpassing two-stage methods (like Faster R-CNN). The

focal loss is applied to modulate the cross entropy loss in

order to focus learning on hard examples and reduce the

weight of the numerous easy negatives. Ultimately, it is a fully

convolutional one-stage detector [5].

D. Evaluation KPI

Evaluation of the trained models is done by comparing the

detection results with the ground truth bounding boxes, which

results in calculating the mean average precision (mAP). mAP

for a set of queries (in this case, set of images) is the mean of

the average precision scores for each query (in this case, set

of predictions with confidence levels).

mAP =

∑Q
q=1 AP (q)

Q
(1)

where Q is a number of queries.

Average Precision (AP), in turn, represents the average of

maximum precision values over all correct detections. In other

words, it is the area under the precision-recall curve.

AP =
∑

precision(x) ∗ (recall(x)− recall(x− 1)) (2)

where precision is an interpolated precision.

Precision is calculated as a fraction of ground truth objects

from all detected objects:

Precision =
TP

TP + FP
(3)

Whereas, Recall is the ratio of correctly detected objects to

all ground truth objects:

Recall =
TP

TP + FN
(4)

In this paper, it is proposed to calculate the precision and

recall values for each image. Plotting (Figure ??) the results of

each image in the testing dataset will give us Precision-Recall

Curve. Then the AP value is obtained according to Equation

2.

V. APPLICATION IN INDUSTRIAL ENVIRONMENT AND

EVALUATION

The application of the afore mentioned algorithms is now

focused in the following chapter. After a short description of

the training process we give attention to comparing the results

with those reached at the challenges referencing above.

A. Training and Evaluation
Training data consists of 2000 images with various number

of containers per images. The distribution of container types

is regarding to their appearance in the material flow as shown

in figure 2 as follows:
- Pink: 14.762
- Black: 6.935
- Blue: 1.603
- Brown: 190
- Grey: 185
- White: 46
- Green: 23
The neural networks were trained with the set of hyperpa-

rameters shown in Table II on NVidia GPUs (Table III).

TABLE II: Training Parameters

Algorithm Learning Rate Weight Decay
YOLO 0.0001 0.0005
SSD 0.000099 0.0005

Faster R-CNN 0.0001 -
RetinaNet 0.0001 0.000005

TABLE III: Hardware Configuration

Algorithm GPU
YOLO 2x GeForce GTX 1080
SSD 2x GeForce GTX 1080 Ti

Faster R-CNN 2x GeForce GTX 1080
RetinaNet 2x GeForce GTX 1080

In turn, testing data was separated based on the location

where the images were taken. This allows to evaluate the

performance of the detection algorithms with regard on the

frequency of particular containers in given plant locations:
- Germany: Munich, Leipzig and Regensburg
- USA: Spartanburg.
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B. Results compared to challenges

As emphasized in section III, the goal is to have a system

which is robust, precise, scalable, and fast. In this paper, the

above mentioned parameters, except scalability, of the state of

the art deep learning models are evaluated. These properties

can be quantitatively analyzed through mean average precision

(mAP) value for robustness, intersection over union (IoU)

value for precision, and computation time for speed.

For quantifying robustness mAP was chosen as the score

encloses the performance of a model on both classification and

detection as already elaborated in section IV-D. From the table

IV it can be seen that in the test set prepared from German

plants SSD yielded the highest mAP of 61.3% and YOLO

follows immediately with a value of 58.8%. Faster RCNN

and Retina Net reached an mAP score of 47.3% and 35.6%.

The performance differences between the models on BMW

dataset also varies as that of the public data sets. On the BMW

dataset the models perform better than on the MS COCO and

worse than that on Pascal VOC. From the differences in the

performance of the models on the Pascal VOC, MS COCO

and BMW dataset, it can be noted that the preparation of an

appropriate dataset is vital in reaching the necessary accuracy

for industrial implementation.

To evaluate the accuracy of bounding boxes the IoU values

applied in mAP calculation was used, as it quantifies the

percentage of correct region in the predicted box and the

ground truth. For this experiment, a prediction is considered

true positive if the IoU value is greater than 40%; only the true

positives were used in evaluating the bounding box accuracy.

Compared to the evaluation of robustness of the models,

the results of the accuracy of the bounding box predictions

between the different models are similar. Retina Net performs

the best with an average IoU of 69.5%, and Faster RCNN has

an accuracy of 68.1% and YOLO 67.2%. The accuracy of the

bounding boxes predicted by SSD is also close to the other

models with a value of 60.6%. All the models have comparable

performance,

The average inference time was calculated for every model

and YOLO is 20 times faster than Retina Net with an average

computation time of 43 milliseconds for a prediction. Retina

Net takes the longest with 1056.3 milliseconds, Faster RCNN

527.9 milliseconds and SSD 491 milliseconds. However, the

comparison has to consider that image passed to Retina Net

is of size and to YOLO is of size 416 × 416. Faster RCNN

uses an image of size and SSD an image of size 600 × 600.

Also the YOLO implementation used was written on C, while

the implementations of the other models were on python. The

difference in the implementation language has a major role

in the lower inference time for YOLO compared to the other

models.

For any of the models to be used in the industrial envi-

ronment both the robustness and the accuracy has to increase

significantly. An alternative would be to have additional val-

idation steps to remove false positives in the prediction and

resize the bounding boxes using prior knowledge to ensure an
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Fig. 8: Mean average precision (mAP) of state of the art

models on public dataset and BMW Groups dataset. The

results on the Pascal VOC dataset and MS COCO are as

reported by Wei Liu et al. and Tsung-Yi Lin et al. respectively

[4], [5]

application which is suitable of industrial use.

TABLE IV: Performance of the state of the art deep learning

models in object detection for industrial use. The mAP of the

public datasets were obtained from the SSD

Detection time
Deep Learning mAP IOU in % in milliseconds

Country Models in % Mean SD Mean SD
YOLO 58.8 67.2 14.3 43.0 6.0

Faster RCNN 47.3 68.1 13.3 527.9 75.1
Germany Retina Net 35.6 69.5 15.1 1056.3 289.5

SSD 61.3 60.6 13.1 491.0 6.0
YOLO 37.1 60.3 13.1 40.5 4.3

Faster RCNN 30.3 62.9 13.9 667.4 69.8
USA Retina Net 24.0 57.8 13.4 1.2686 105.6

SSD 35.2 59.5 12.5 626.0 4.6

C. Results compared to changing environments

Generalization is one of the most important aspects for the

assessment of the performance of neural networks. Usually, a

model is expected to generalize well to unseen data that differ

from the samples it was trained on.

For the use case at BMW Group, the main focus was

on getting images from German plants to train the above

mentioned models, as this is where the deployment of object

detection first occurs. However, in the long run a world-wide
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roll-out of current development is planned. Therefore, the test

set contains images from both German and US plants. The

comparison of the results of all models for the two different

test sets are visualized in Figure 8. The performance measures

for test set 2 (USA) demonstrate that the detection quality for

all models is significantly lower than for test set 1 (GER). For

example, YOLO performance is 21,7% worse for USA then

for GER, while the difference for SSD performance is only

13%. On average, the difference in performance between test

set 1 and 2 is 15,8%. Having a closer look on the inference

results emphasizes that the models detect less containers while

producing a higher false-positive rate.

There is a couple of characteristics that differentiate USA

images from the ones taken in German plants. One of these

characteristics is the existence of a greater variety of contain-

ers, thus increasing the generalization challenge for the mod-

els. Furthermore, the whole environment is looking differently,

although the focus is still on the automotive production plants

only. For example, on average, the containers are covered

with more stickers, which occlude the visible surface of the

containers and are therefore increasing identification difficulty.

As introduced in section A, the training set consists mainly

of images from German plants. Images from US-plants are

underrepresented. Taking in consideration the different char-

acteristics between the plants in Germany and the USA - and

therefore the differences between the training set and test set

2- the drop in detection quality seems plausible.

In general, the results are not as good as required. The main

reason is that our data base is insufficient. We need more data

and our data set is not balanced enough. Therefore, our models

are not able to generalize and perform as well as we would

need it to do.

VI. FUTURE WORK

The comparison of the different neural networks on public

datasets and on manually labeled industrial datasets shows a

big gap regarding the evaluation kpi. On average a discrepancy

of 20 % can be identified. With respect to the aforementioned

requirements for deploying neural networks to an industrial

environment, we have to state that the application of open-

source algorithms is not yielding satisfying results.

Even when considering the performance of the models on

public datasets, an application in the logistics process chain

seems unfeasible. The robots have to deal with up to 20k

containers per day. Therefore, a performance error of 20 %

would lead to 4k human interventions, which is way too

expensive for such cost-intensive fields of application.

For our future work, we aim for improving the data base as

well as the optimization of hyperparameters for our learning

algorithms. Following our goal to deploy our work to every

plant in the BMW network, we define the following measures

for further research:

1) Increase the number of training data

2) Define equally distributed training set (which represents

all plants and their characteristics).

3) Train a different model for each country, thus taking

into account all the plant-specific characteristics while

keeping the overall complexity at a low level.

4) Introduce new object (sticker/label) and implement logi-

cal checks (e.g.: if the model detects a label, there should

also be a container).

In order to improve the datasets finally a deeper insight in

the different influences is important. Not only the distributions

of the different container types also the distributions for

examples of the number of labels per container could matter.

This is the outline for future research.
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