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Abstract. In this paper a realtime controller architecture for our au-
tonomous cars, a highly equipped conventional car and an electric ve-
hicle is presented. The key aspects for controlling a car are stability,
accuracy and smoothness, which constrain design critereas of all kinds
on controller components. This report presents solutions for a variety of
controller components, and aspects of a controller implementation of an
autonomous car. The algorithms described proved their applicability in
dense urban Berlin traffic as well as on the Berlin Autobahn.

1 Car Introduction

In our project AutoNOMOS we use three different platforms. The Spirit Of
Berlin, a Dodge Caravan marks the first autonomous car which was programmed
at the Artificial Intelligence Group of Prof. Ratl Rojas at the Freie Universitéit
Berlin since 2006. This car successfully participated in the Darpa Urban Chal-
lenge and qualified for the semi finals. Since 2010 we are working on a Volkswagen
Passat, called “MadeInGermany” (MiG). MiG is a very modern car with mod-
ern sensors and a drive by wire architecture where we have access to throttle
and brake actorics via CAN bus. Since 2011 we are also working on an electric
vehicle, a Mitsubishi iMiev, called “e-Instein”.

Fig. 1. Autonomous Cars (f.1.t.r.): Spirit of Berlin, e-Instein, MadeInGermany

2 Controller Specification

At the beginning of the development of a controller, one has to think about
the environment the controller should work in and about the constraints the



controller has to satisfy. For our autonomous cars, the following specification
aspects were defined:

— Safety: The controller must be fail safe on a high level with regards to soft-
ware or hardware failures. Further, the controller must never perform ma-
neuvers, which are not safe with respect to the physical limitations of the
car or the environment. It must never operate beyond the mechanical lim-
itations of the actoric. To give an example, a controller which operates on
a flat street can to make other assumptions about grip in comparison to a
controller which has to operate in off-road scenarios. Regarding actoric, a
quickly responding and precisely adjustable actoric allows more aggressive
maneuvers than the one reacting with huge time delays. As a rule of thumb
translational and centrifugal forces are limited to 40 percent of physically
possible values.

— Accuracy: Reaching desired control values quickly is most important for a
safe driving of the car. Imprecise or slow controllers usually lead to oscilla-
tions within the upper controller level or behavior layer. Oscillations are one
reason for an uncomfortable driving experience. For MadelnGermany, the
goal was to have a lateral error to the planned trajectory of less than 10 cm
at 100 km/h and a velocity error of less than 0.5 km/h.

— Comfort: Besides limiting the amount of lateral and longitudinal forces to a
level which feels comfortable to a modest driver, another important aspect
is to limit acceleration changes, i.e., the function of the acceleration vector
over time must be continuous. Changes within the acceleration vector must
remain small for a comfortable feeling of drive.

Some of these aspects contradict each other, e.g., safety and comfort. A safe
controller might try to apply appropriate maneuvers as fast as possible but
this can be uncomfortable, because humans prefer slow changes of accelerations.
Further, comfortable maneuvers, e.g., braking late, can sometimes result in dan-
gerous situations. The same holds for accuracy. A controller which tries to be
too precise can result in an uncomfortable feeling of drive.

3 Controller and Planning Modules Overview

This section introduces the module chain and the corresponding module function
description. Modules will be distinguished by their level of abstraction in terms
of the platform on which they run. An overview of the given modules, their input
parameters and their implementation name within the OROCOS-Framework are
given in Fig. 2. The code within the AutoNOMOS project was designed to serve
as a middle ware for a variety of autonomous platforms. Therefore, reusability of
code was a very important aspect. Only the low controller modules are platform
specific, high level behavior modules are independent of the platform they are
executed on.



Task  InputParameters = = OROCOS-Modules |
Plan Generation Road Network, MissionData Behaviour
Plan Selection Obstacle State, Distance to Goal Behaviour
b)
Task | \ Input Parameters \ { OROCOS-Modules
Velocity Obstacles, Curvatures, Traffic
Calculation Signs, Comfort Settings Abstract Controller
¢)
Task Input Parameters OROCOS-Modules |
Velocity Control Wanted Velocity ControllerPassat/ControllerIMiev
GearSelection Wanted Gear, Current Velocity ControllerPassat/ControllerIMiev
Lateral Control Car Distance and Angle to Plan ControllerPassat/ControllerlMiev
Steer Angle Control Wanted Steer Angle, Safety Parameters SteerControllerPassat / IMiev on Safebox

Fig. 2. Controller and behavior models. a) For these models, code and data are vehi-
cle independent. b) Code is vehicle independent but not data independent. ¢) These
modules are designed for a certain vehicle (VW Passat (MiG)).

4 Steer Control Chain (MiG)

The complete steer control chain includes the module for the behavior, which
generates a planned trajectory. The behavior uses a road network definition file
which includes the streets, and a mission file which defines the checkpoints to
be visited while traveling to a certain destination. Just to mention, the behavior
generates in each time frame a new, updated plan, mainly it does not remember
old trajectories. Now, the generated planned trajectory is fed into a lateral con-
troller. The task of the lateral controller is to compare the current position of the
car with the alignment of the planned trajectory. Depending on other aspects as
comfort and the current velocity, the lateral controller generates a wanted (de-
sired) steering wheel angle. It was assumed there is a linear dependency between
steering wheel angle and the angle of the front wheel, even though it is known
that this assumption is just a rough approximation. However, for small angles
this assumption provides a good estimate and bigger steering angles are exe-
cuted at low velocities only, where the exact execution of the generated wanted
steering angle is not as important as it is for high velocities. Future work re-
mains to approximate the real function between the steering wheel angle and



front wheel angle, and also the function between velocity, steering wheel angle
and wheel slip. Bringing back the focus to the control loop, the desired steering
wheel angle is fed into the steer controller, who generates a desired momentum
for the steer motor. The control loop is depicted in Fig. 3. In the next sections

the steer angle controller and later the lateral controller are described “bottom
79

up”.

Carstate | Steer | Steer Motor
(>=100 Hz) " Momentum (100 Hz)

Desired Steer

Egostate Steer Momentum
Angle ' (Voltage enc.)
Steer Angle
Plan | LateralController | Controller + D/A-
' (100 Hz) Desired | Converter
Steer (Safebox, 100 Hz)
Angle

Fig. 3. Steer controller chain for MadeInGermany. The lateral controller generates a
desired steer angle, feeds it to the steering wheel controller, which generates a desired
momentum, encoded within a voltage.

4.1 Steer Angle Controller (MiG)

The steer angle controller gets a desired steering wheel angle as an input and
generates a torque value. To avoid oscillations on the lateral controller, which is
executed right before the steer angle controller within the control loop, the steer
angle controller shall generate torque values to minimize the difference between
desired steering wheel angle and current steering wheel angle as quick as possible.
The steer motor, manufactured from Maccon, has no built in angle sensor. Thus,
for feedback, we use an external angle sensor, which is built in stock in the MiG-
Passat and sends its data via CAN bus with an update frequency of 100 Hz to
the controller gateways. 100 Hz is also our control frequency. The sensory data
are accumulated in the car state. This architecture is not optimal with regards
to system feedback. Further, every system has a certain reaction time. To handle
these imminent delays, a predictive controller was the solution of choice.
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Fig. 4. Impulse response test for the steer motor.

Predictive control. To get a rough estimate about the delay within the control
loop, we sent a torque impulse to the steer motor and measured the resulting
angle change over time. The response curve was plotted in Fig. 4. The measured
response time was about 150 ms. One can see the steering wheel accelerating,
the maximum steer angle velocity was measured at 600°/s.

To overcome the system delay, a predictive PID-controller was used. The con-
troller does not use the current steering wheel angle 6, as feedback, but a
prediction value of what the steering wheel angle will be G;M, assuming a con-
stant change of the steering wheel angle within the next ¢ = 0.12s - which is the
estimated system delay - while moving constantly with the currently measured
steering wheel angular velocity wsg,,. We get:

0., = 0p +t - wew (1)

Now, where we calculated the values for the control loop, we feed them into the
PID-rule. We use a classic PID-controller with a limited maximum integral for
the integral term. This is important to avoid big overshoots.

Velocity dependent momentum adaptation. To accommodate fact that
the necessary steer momentum varies with the car’s velocity, a scale factor was
introduced, which is multiplied with the controller output, c.f., Fig. 5. When the
car is standing, one has to use a higher force to turn the front wheels, because the
tire has a high friction with the concrete. When moving slow, the steering wheel
can be turned quite easily. The higher the velocities are, the harder it gets to turn
the steering wheel in. There are several causes for this: At first, the centrifugal



force gets bigger, pushing the front wheels back to their neutral position. Second,
the rotational impulse gets bigger, to change the impulse vector, a higher torque
is necessary. Third, car manufacturers limit the support of the steering servo
motor to get the car more stable at higher velocities - our steer motor relies on
the support of the steering servo motor. Experiments showed that the controller,
in its precise mode, i.e., with maximum scale factors reaches a desired angle
within one second with a precision of less than 0.5 degrees, after 1.5 seconds the
accuracy is better than 0.15 degrees.

scale
factor |
1
. High velocity,
Standing, _ vel.>=10m/s
velocity <=
0.25m/s
0.5 —

Low velocity, 0.25m/s <
v<=6.4m/s

velocity

Fig. 5. Steer momentum scale factor function, modeled as a piecewise linear function.
Medium momentum is necessary for a standing car, small momentum for low velocities
and higher momentum for higher velocities - especially while steering away from the
zero angle.

Steer Angle Limiter. To avoid the execution of wanted steering wheel angles,
which might pose a threat to the car’s safety and stability, a steer angle limiter
was implemented, which calculates the maximum allowed steering angle for a
given velocity under the assumption of a maximum allowed centrifugal force, see
steer angle limiter code example. The steering wheel controller, together with
the steer angle limiter runs on the safe box hardware, that’s why it cannot be
negatively affected by the other modules, running on the main computer.



Jxxxxkkkk Steer Angle Limiter ssssxxx/

float getMaxSteeringWheelAngle(tolerance) {

mSinMaxFWAngle = fabs (WHEELBASE % MAXLATERALACCELERATION /

(mAvgFrontWheelSpeeds % mAvgFrontWheelSpeeds) ) ;

if ((mAvgFrontWheelSpeeds != 0.0) && (mSinMaxFWAngle < 1)) {
maxWheelAngleAtGivenSpeed = asin (mSinMaxFWAngle) % 180 / Pi;
return fabs ((maxWheelAngleAtGivenSpeed /
MAXWHEELANGLE * MAXSTEERINGWHEELANGLE) + tolerance);

}
return MAXSTEERINGWHEELANGLE; //in degrees

}

5 Steer Controller Chain (e-Instein)

The main difference of the e-Instein steer controller chain to the MiG controller
chain is that the output voltage of the safe box encodes a steer angle for the
Paravan module. The lateral controller generates a desired steer angle, feeds it
to the steering wheel controller, which generates a calibrated angle value for the
safe box. The safe box generates a voltage, encoding the steering wheel angle
non-linear and feeds it to the Paravan system, see Fig. 7. The different modules
are described in detail in the following sections.

Carstate Steer Paravan Steer
Momentum Controller + Motor
|
Steer
Egostate Steer Angle
Angle (Voltage enc.)
D/A
Plan Lateral | SteerControll /
o Controller Desired | erlMiev Converter
Mapped (SafeBox)
Steer Steer
Angle Angle

Fig. 6. Steer controller chain for e-Instein.
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Fig. 7. An input angle is mapped to an output angle. The voltage at the paravan is not
linearly dependend on the resulting steer angle. The function, of the form: a-(z—b)°+d
does not pass the origin of the coordinate system.

5.1 Steer Angle Controller (e-Instein)

Originally the steer controller for the e-Instein was assumed to be unnecessary,
because the lateral controller generates a desired steering wheel angle and the
Paravan module takes a voltage, encoding a steering wheel angle as an input.
Unfortunately the mapping between both is not linear and we were missing
a specification. Therefore, the steering wheel angle implements a linearization
function, c.f., Fig. 7, to map the desired angle to a linearized angle, which feeds
the Paravan system, c.f., Equation 2. Parameters a, b, ¢, d had to be chosen wisely
to approximate the experimentally derived function.

linearizedAngle = sgn(desiredAngle — b) - a - (|desiredAngle — b)) +d (2)

This function, unfortunately, gives only a rough estimate for the control voltage
to reach a certain wanted angle. The Paravan system implements a dead zone,
thus, it depends from which direction (left or right) the steering angle turns into
a desired angle. This prediction function pred is sufficient to reach the steering
wheel angle with an accuracy of +/- 5 degrees. To reduce the remaining differ-
ence between desired and current steering wheel angle below 5 degrees, a PID
controller, somewhat similar to the one in MiG is used. The PID-controller can
only compensate differences smaller than 10 degrees to avoid oscillations. The
steering motor in the e-Instein is very slow (approx. 360 degrees per second),
a non limited integral in the PID controller could result in harsh overshoots.
Combining the prediction function and the PID-controller, we get the summa-
rized control Equation 3, resulting in a linearized Angle, which can be linearly



encoded to a voltage, which again feeds the Paravan box.

linearizedAngle = pred(desiredAngle) + pid(desired Angle, current Angle)
(3)
The combined control form allow to reach a desired steering wheel angle with
an accuracy below 1 degree, within one second - assumed the desired steering
wheel angle is not too far away from the current one.

5.2 Lateral Controller (MiG and e-Instein)

The task of the lateral controller is to generate a desired steer angle to stabilize
the car on the planned trajectory. Thereby the car must not swing left and right
of the trajectory. To fulfill the control task a velocity adaptive PD controller was
implemented.

vehicle
correction angle to return
to trajectory
return point
closest pt. preview distance :
on traject. trajectory

Fig. 8. Lateral controller sketch, showing closest point on trajectory, return point and
correction angle.

Velocity adaptive PD-Controller (MiG and e-Instein) The velocity adap-
tive PD controller uses two weight sets, one weight set for low velocities and one
set for high velocities. For medium velocities in between, the two weight sets are
linearly interpolated. The resulting function is somewhat similar to the output
scale function of the steering wheel controller of MadelnGermany, see Fig. 5.
The control task is visualized in Fig. 8. Control input values are the current
car orientation and the angle between the car’s forward looking direction and
the direction from the car’s front axis’ middle point to the return point of the
trajectory, c.f., Fig. 8. The return point on the plan is calculated velocity de-
pendent. The faster the car goes, the more distant the point is. This is useful to
stabilize the car for higher velocities and to be able to perform sharp turns while
going slow. Still, this approach tends to short cut curves by a small amount. The
distance of the return point to the closest point on the trajectory (returnDist)
is calculated as shown in Equation 4.

returnDist = max(staticDist, velocity - velocityScale) (4)



The static distance value makes sure that the distance to the return point never
gets smaller than a certain value, also when the car is standing. It was set to 2
meters in praxis, the scale factor was set to 1 s, which means that the return
point is usually reached within one second, if the plan would be kept. In praxis,
the car converges to the plan, only, because the desired angle is calculated each
time again, converging to zero but never reaching zero.
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Fig. 9. Ego state over time from bottom left to top right. Suddenly an ego state jump
occurred, was recognized by the controller. The jump in interpolated within a certain
time, a useful value was t = 2s.

EgoState jump filtering (MiG). A second feature of the controller is to
memorize the last egostate. Using a prediction, it can detect differences between
the expected egostate in the next time step and the current egostate. If the
projected difference to the lateral direction of the car is bigger than a certain
amount, e.g., 0.1 meters, it is considered to be a critical ego state jump. The
two dimensional egostate difference is substracted from the current egostate and
interpolated to zero within two seconds. If within these two seconds another jump
is detected, an accumulated difference is calculated and interpolation starts from
new.

The ego state jumps are supposed to have different causes. Loss of UMTS
connection result in loss of correction data and in ego state jumps. Multi path
connections to localization satellites could also be a reason.

Car angle to IMU angle online calibration. A further feature is the online
calibration of the supposed car orientation angle to the Inertial Measurement
Unit (IMU) angle of the Applanix GPS. The Applanix calibrates its IMU at



every restart. Thus, the difference angle between IMU and car forward direction
changes every time about 0.05 degrees, in worst case scenarios, whenever the
calibration routine was ignored up to 0.5 degrees. At velocities of 100 km/h, 0.5
degrees wrongly calibrated IMU can result in a trajectory offset of 0.5 - 1 meter.
Therefore a second calibration routine was implemented in the controller. When
going almost straight and going faster than 60 km/h, the controller integrates
the error to the trajectory over a certain time span, a useful value was t = 4s. If
the integral was significantly below or beyond zero, an small positive or negative
offset value is added to the car orientation angle. Thus, after ten iterations, i.e.,
within a minute, the IMU offset could be successfully neutralized.

velocity <3 m/ velocity =0 m/s

driver intervention

Engaged, Shift into

velocity >=3 m/s

driver intervention

Disengaged

Fig. 10. Finite state machine of the gear shifting routine, enabling the driver to give
the control back when going fast enough, or braking and shifting whenever going slow
or standing. The disengage state can be reached from all states (left out in the figure).

6 Gear Selection (MiG and e-Instein)

The gear selection routine has to access the gear over CAN bus, and, if necessary
send brake commands. The gear selection routine must fulfill at least two tasks:
shift into drive whenever the car is engaged, i.e., made ready for autonomous
drive. Initially in N, the brake must be pressed with 10 bar, then the gear can be
set to drive, reverse or sport. Another task is to give back the control to the car,
whenever a driver intervention occurred, which means, that the driver intervened
by pressing throttle or brake (MiG only). After releasing brake or throttle, the
computer should regain control over the car without stopping. Luckily, the gear
allows shifts from neutral to drive, whenever the car is faster than 10 km/h or



approx. 3 meters per second. The finite state machine, depicted in Fig. 10 gives
an idea about the functionality of the gear setting routine.

Carstate L EFI, Watchdog, CAN
(>=100Hz) ‘BrakeBooster (100 Hz)

CAN-commands

Egostate Wheel (Throttle, Brake)
Speeds
Plan VeIochIy | Velocity Control
— Calculation W d (100 Hz)
(100 Hz) ante
Velocity

Fig. 11. Velocity control chain: Given a plan, a desired velocity is calculated by the
velocity calculation module and fed into the velocity controller. Feedback is given by
the ego state and the wheel speeds.

7 Velocity Control Chain (MiG)

The velocity control chain starts again with a planned trajectory from the be-
havior module. The velocity planner calculates a wanted/desired velocity on
this trajectory. This wanted velocity is handed to the velocity controller, which
generates throttle and brake commands, which are fed through the cargate and
watchdog to the CAN bus of the MiG-Passat. The different modules are de-
scribed in detail within the next sections.

7.1 Velocity Control (MiG and e-Instein)

Velocity control is executed by a Pl-controller, running with a 100 Hz. Input
values are a wanted velocity from the velocity calculator and a current velocity,
coming via CAN bus and stored in the car state.

Brake and throttle controller. (MiG) The PI-controller compares the wanted
velocity to the current velocity. Also here the integral is limited to a certain value.
The output of the controller is mapped to throttle or brake. Negative outputs are
mapped to brake commands and positive outputs are mapped to throttle. The



most important aspect here lies in the fact, that throttle and brake commands
have different effects, i.e., 50 percent of brake results in much higher accelera-
tion amounts than 50 percent of throttle. That is why positive outputs of the
controller were weighted with a throttleConstant, which was set to 4.

Throttle and brake limitations. (MiG) For a comfortable ride, the brake
commands were limited to 32 percent of their maximum value, which can result in
up to 6ms~2 deceleration. This was especially important for testing the obstacle
tracker. To give an example, wrongly classified obstacles could have a devastating
effect when going with a 100 km/h on the highway, if they resulted in a full
brake, endangering especially the following cars. Also the throttle commands
were limited to 50 percent of their maximum during normal velocities. When
starting to move, this value was limited to 35 percent and linearly interpolated
to 50 percent at a velocity of 5 meters per second.

For a racetrack scenario, much higher thresholds were applied and can be
activated through a flag. In this case, the steering angle limiter from Section 4.1
must be deactivated on the safe box as well.

Dynamic Handbrake. (MiG and e-Instein) Stopping a car needs special
treatment. A car with an automatic gear tends to start rolling, even without
any throttle or brake commands. The integral part of the PI-controller must
have an integral weight together with a maximum integral value, big enough to
stop the car. This alone is no difference to any other velocity to control. But
if the desired velocity is set to zero, the controller tends to convergence to the
wanted velocity or it swings around the wanted velocity, resulting in a stop and
go. Thus, without special treatment, it can take several seconds to reach a full
stop with the car. Further, if pressing the brake not hard enough, the Passat car
(MiG) will not fully open the clutch of its direct shift gear, resulting in a semi
closed clutch, which again causes severe damage to the clutch over time. A nice
solution is to add an increasing amount of brake pressure over time, whenever
the wanted velocity is set to zero, combined with the fact that the car is already
slower than 4 meters per second. If the car is actually standing, a further fixed
amount of brake pressure is added to the brake, to make sure, the clutch is
fully open. This “dynamic handbrake” is also useful when stopping at a steep
mountain to make sure the car will stop. In experiments the controller proved
to be able to keep all velocities up to 100 km/h with an accuracy of 0.5 km/h.

7.2 Velocity Calculation (MiG and e-Instein)

The velocity calculation module is independent of the car it is running on. Im-
portant parameters for the velocity calculation are maximum allowed centrifugal
accelerations and brake accelerations. These values are referred to as “comfort
settings”. The velocity calculation is generated instantly and recalculated each
time step again. There are different aspects which have an effect on the currently
desired velocity: static obstacles or traffic signs/lights on the planned trajectory,



dynamic obstacles on the trajectory, curves in front with a certain curvature and
at a certain distance, , and of course the officially allowed velocity. All aspects
on the trajectory result in a maximum velocity at which they can be approached
currently, e.g., a curve in a distance of 5 meters results in a lower currently de-
sired velocity than the same curve in 50 meters distance. For reasons of safety,
from all desired velocities the smallest one is returned to the velocity controller.

The following sections will give a glimpse about the different calculations,
which all use the same core function.

Velocity calculation for static obstacles. A first assumption when braking
towards a static obstacle was, that the braking acceleration a shall be constant
over the whole time. Let us assume, a static obstacle was detected in a certain
distance As. To brake down with a constant acceleration a (brake accelerations
are negative) and to stop right in front of the obstacle, the current desired
velocity vg is calculated as follows:

Vg =+v/—2aAs (5)
vg = (—2a - (obstaclePosition — carPosition))’- (6)

vg = (—2a - (obstaclePosition — carPosition))” (7)

In Fig. 12 a desired velocity over distance to obstacle function is shown for
a constant example brake acceleration. For a generalization, parameter b was
introduced and is, for the case of constant accelerations, set to 0.5. Acceleration
parameter a was set to -1.5.

In practice it showed that static accelerations do not fit the human perception
of comfort. Humans tend to accept higher accelerations at high velocities, at low
velocities the same accelerations feel uncomfortable. Therefore Equation 5 was
changed to allow higher accelerations at higher velocities. This can be achieved
through changing the values of parameter a and b, parameter b defines, how con-
stant the acceleration is over time, b = 0.5 means constant acceleration. Through
experiments was found, that the current function with « = —0.65;b = 0.57 leads
to much better results regarding a higher acceleration at higher velocities and
smaller accelerations while stopping;:

vg = (=2 - (—0.65) - (obstaclePosition — carPosition))-5" (8)
As

The function is plotted in Fig. 12. Both functions result in the same desired
velocity of approx. 100 km/h for a distance of 300 meters, or, with other words,
the planned braking distance for a velocity of 100 km/h is the same, when ap-
proaching a stop sign. Not to increase the stopping distance for higher velocities
was an important aspect within the design process, because the sensors in the
car have a limited distance at which they can detect obstacles. In case of an
unexpected obstacle, the planned velocity will instantaneously jump to a small
value, resulting in a high braking pressure.
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Fig. 12. Desired velocity function over distances to a static object. Blue curve depicts
the function with a constant brake acceleration, red curve for a variable brake function.

Stopping for traffic lights. One exception of static obstacle are traffic lights.
If turned red, they are treated as stop signs, when green, they can be just ignored.
If a traffic light turns from green to yellow, it depends on the proximity of the car
to the traffic light, if a braking maneuver is executed or not. If the car is closer
than 42 percent of the necessary distance to brake down comfortably, which can
be calculated by another form of Equation 8, where As is isolated, the car just
passes the traffic light. This 42 percent point is called the “point of no return”.

Velocity calculation for dynamic obstacles. The introduced function can
be extended to braking down to dynamic obstacles easily. Therefore, an accurate
estimate of the obstacle’s velocity is necessary. Positive velocities mark an object
which is moving away from the car. Lateral velocities are not taken into account.
The desired velocity Equation 8 can be extended as follows, when v, marks the
velocity of the obstacle, s, and s, stand for the position of the car and of the
obstacle, respectively:

vg = (=2-a- (S — Sc + (Vo(1/?))))P (9)
Vg =(—=2-a-(So — Sc —Vo + (Vo1/?)))? (10)
As

The first equation assumes that the car will accelerate/decelerate to the obstacles
velocity and approach the obstacle with zero distance. The velocity over distance
to the obstacle function is depicted in Fig. 13. The second Equation keeps a safety
distance depending on the obstacle’s velocity. With the second equation, a very



comfortable car following behavior could be implemented, which worked both at
high autobahn velocities as on inner city traffic.
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Fig. 13. The velocity over distance to an obstacle function, as shown in Eq. 9.

Velocity calculation in curves. Velocity calculation in front of curves is
somewhat similar to braking in front of multiple moving obstacles. At first the
planned trajectory is sampled in different distance steps, as Fig. 14 shows. For
each point of the sample set and on the trajectory, the curvature c is calculated.
For each given curvature ¢ # 0, which is the reciprocal of the curve radius
¢ = 1/r, given a maximum allowed centrifugal force F,, we get a maximum
allowed velocity v:

F, v?/r (11)
F, =v%-¢ (12)
v=+/F./c (13)

P20 20 20 10
0TS 20\J0 20 20 10
25 30 35 40

Fig. 14. Above the trajectory the maximum allowed velocity are shown; below, the
distance of the car to that point is shown.

Now, with a maximum velocity v, and a distance s, for each of the sampled
points on the trajectory, the first variant of Equation 9 can be applied, assuming



that v, is the velocity of the obstacle (s,) and s, the distance of of the obstacle
(As). After doing this for all points on the sampled trajectory, we take the
smallest velocity as the wanted velocity for curvatures.

7.3 Combination of forces using Kamm’s circle (MiG and e-Instein)

To avoid that the maximum lateral and longitudinal forces occur together, a sec-
ond variant for the velocity calculation in front of curves can be applied. Here we
take advantage of the shape of the “Kamm’s Circle”. In our case, both maximum
forces are modeled as an ellipse, different shapes are also possible. For the most
distant sample point on the trajectory the curvature and the maximum allowed
velocity are calculated. Now, this velocity is propagated stepwise back to the car,
but a new constraint here is, that in case of maximum lateral acceleration, no
longitudinal acceleration must occur in the time step before. While going step
by step back to the car, the propagated velocity it compared to the maximum al-
lowed velocity in the next sample point and the minimum of the current and the
propagated velocity is taken. The advantage of this method is, that both forces,
lateral and longitudinal must not occur in arbitrary combinations, making the
driving experience more comfortable.

Longitudinal force ,

Lateral force

Fig. 15. Example form of a Kamm’s Circle.

8 Derivation of a Car Model (MiG)

A precise car model is important for a predictive control and for a good controller
simulation. In this section, a short overview of the steps taken to acquire an
accurate model for MadeInGermany are presented.



8.1 Derivation of a Car Model

A car model is crucial for a strong simulation of the car’s dynamics and to estab-
lish an accurate controller. As a model for position and orientation prediction
over time an Ackermann drive was assumed for our car as long as centrifugal
forces and accelerations were below 5ms~2. As a further abstraction a bicycle
model for the car’s dynamic was used, which consists of only one front and one
left wheel in the middle of each axis. Given an shaft distance L, a velocity v at
the front middle axis point and a steering angle « of the front wheel, the change
of the car’s orientation angle w can be easily calculated:
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Fig. 16. Velocity of MiG over time for different throttle values.

8.2 Modeling Acceleration and Braking

For an accurate control of a wanted speed it is useful to have a model of the
acceleration and braking behavior of the car, given the gear is set automatically
from the gearbox. The desired function has as arguments a current velocity v;_1,
a time duration t, a current throttle or brake command uy and returns a new
velocity vy.
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Fig. 17. Acceleration of MiG over time for different throttle values.

U = f(’l)t,]_,u,t) (15)
For reasons of simplicity, the acceleration, including braking experiments
were started with a standing car, then the car accelerated for various seconds,
but not faster than 80 km/h. The braking experiments were performed at 30
and 50 km/h.
The velocity was provided by the four velocity sensors in the wheel.

Throttle model First, we were interested in the car’s acceleration properties
when using the throttle command. We recorded different velocity over time func-
tions for different, but constant throttle commands. From the velocity over time
functions we can derive the acceleration over time functions, as well.

Now a velocity over time function was be approximated. The velocity over
time functions can be approximated with good accuracy by a polynomial func-
tion of the form:

v = at® (16)

The following parameters were derived through gradient descent, where b
is constant 0.8, and where a depends on the chosen throttle strength u. Now
a function for a, depending on the given throttle command w can be derived.
Therefore a sigmoidal function of the form showed to be useful:

4.1

= T 5055w

+04 (17)
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Fig. 18. Approximated velocity function over time and over relative throttle values.

The complete function for the car velocity v over time ¢, given throttle com-
mand u was assumed as:

4.1

o t) = (oo 0.4)t"% (18)

UV =

A plot of the function is given in 18. Therefrom, the acceleration over time
function can be derived easily:

4.1

a; = f/(u,t) = O.S(W

+0.4)t70-2 (19)

Brake model Second, we wanted to analyze the car’s braking behavior. There-
fore we drove the car with 30 km/h and 50 km/h and executed constant brake
commands, the resulting brake acceleration over time function is depicted in
Fig. 19 (b). We measured the velocity over time until the car stopped.

As before we derived the acceleration over time functions for the different
brake commands, the function for braking the car, e.g., from a speed of vg = 8.3%*
was approximated by:

vy = max(0, f~(u,t) = vy — (13u’® + 0.2)t) (20)

The two-dimensional function plot for a braking car is shown in Fig. 19 (c). The
control delay of the throttle and of the brake was about 0.1 s each.

8.3 Car Model Conclusion

The acceleration and brake functions for a given current velocity and given
throttle/brake command were successfully applied to our simulator. The lower



level controllers still had to be tuned in the real car because of the complex
car dynamics, especially tire slip, mass distribution, system delays and slippage
within all kinds of gears. However, this simple car model helped significantly to
design the behavior and the higher level controllers within the simulator.

9 Summary

This technical report focussed on the main components of the autonomous cars
“MadelnGermany” and “e-Instein”. The specification described at the beginning
was successfully met. MiG was able to safely drive through inner city traffic and
drove also on the Berlin Autobahn with up to 100 km/h, where its mean lateral
error to the trajectory was less than 10 cm. The velocity error was about 0.5
km/h. For e-Instein these values are still higher, but work is in progress. Future
work will focus on energy efficient control routines to increase energy efficient
control.
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