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Abstract— In this paper we present a novel approach to
estimating the position of objects tracked by a team of mobile
robots and to use these objects for a better self localization.
Modeling of moving objects is commonly done in a robo-centric
coordinate frame because this information is sufficient for most
low level robot control and it is independent of the quality of
the current robot localization. For multiple robots to cooperate
and share information, though, they need to agree on a global,
allocentric frame of reference. When transforming the egocentric
object model into a global one, it inherits the localization error of
the robot in addition to the error associated with the egocentric
model.

We propose using the relation of objects detected in camera
images to other objects in the same camera image as a basis
for estimating the position of the object in a global coordinate
system. The spacial relation of objects with respect to stationary
objects (e.g., landmarks) offers several advantages: a) Errors in
feature detection are correlated and not assumed independent.
Furthermore, the error of relative positions of objects within a
single camera frame is comparably small. b) The information
is independent of robot localization and odometry. c) As a
consequence of the above, it provides a highly efficient method
for communicating information about a tracked object and
communication can be asynchronous. d) As the modeled object
is independent from robo-centric coordinates, its position can be
used for self localization of the observing robot.

We present experimental evidence that shows how two robots
are able to infer the position of an object within a global frame
of reference, even though they are not localized themselves and
then use this object information for self localization.

Index Terms— Sensor Fusion, Sensor Networks

I. INTRODUCTION

For a mobile robot to perform a task, it is important to model
its environment, its own position within the environment, and
the position of other robots and moving objects. The task of
estimating the position of an object is made more difficult
when it comes to the fact that the environment is only partially
observable to the robot. This task is characterized by extracting
information from the sensor data and by finding a suitable
internal representation (model).

In hybrid architectures [1], basic behaviors or skills, such as,
e.g., following a ball, are often based directly on sensor data,
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e.g., the ball percept. Maintaining an object model becomes
important if sensing resources are limited and a short term
memory is required to provide an estimate of the object’s
location in the absence of sensor readings. In [6], the robot’s
belief subsumes the robot’s localization and the positions of
objects in the environment in a Bayes net. This yields a
powerful model that allows the robot to, say, infer where it is
also by observing the ball. Unfortunately, the dimensionality
of the belief space is far too high for the approach to be
computationally tractable under real time constraints. Model-
ing objects and localization is somewhat decoupled to reduce
the computational burden. In this loosely-coupled system,
information is passed from localization to object tracking.
The effect of this loose coupling is that the quality of the
localization of an object in a map is determined not only by
the uncertainty associated with the object being tracked, but
also by the uncertainty of the observer’s localization. In other
words, the localization error of the object is the combined error
of allocentric robot localization and the object localization
error in the robot coordinate frame.

For this reason, robots often use an egocentric model of
objects relevant to the task at hand, thus making the robot
more robust against global localization errors. A global model
is used for communicating information to other robots [11], to
commonly model a ball by many agents with Kalman filtering
[2] or to model object-environment interactions [6]. In all
cases, the global model inherits the localization error of the
observer.

We address this problem by modeling objects in allocentric
coordinates from the start. To achieve this, the sensing process
needs to be examined more closely. In feature based belief
modeling, features are extracted from the raw sensor data. We
call such features percepts and they correspond directly to
objects in the environment detectable in the camera images.
In a typical camera image of a RoboCup environment, the
image processing could, for example, extract the following
percepts: ball, opponent player, and goal. Percepts are com-
monly considered to be independent of each other to simplify
computation, even if they are used for the same purpose, such
as localization [10]. Using the distance of features detected



within a single camera image to improve Monte Carlo Local-
ization was proposed by [5]: when two landmarks are detected
simultaneously, the distance between them yields information
about the robot’s whereabouts.

When modeling objects in relative coordinates, using only
the respective percept is often sufficient. However, information
that could help localize the object within the environment is
not utilized. That is, if the ball was detected in the image right
next to a goal, this helpful information is not used to estimate
its position in global coordinates.

We show how using the object relations derived from
percepts that were extracted from the same image yields
several advantages:

Sensing errors As the object of interest and the reference
object are detected in the same image, the sensing error caused
by joint slackness, robot motion, etc. becomes irrelevant as
only the relation of the objects within the camera image
matters.

Global localization The object can be localized directly
within the environment, independent of the quality of current
robot localization. Moreover the object position can be used
by the robot for self localization.

Communication Using object relations offers an efficient
way of communicating sensing information, which can then
be used by other robots to update their belief by sensor fusion.
This is in stark contrast to what is necessary to communicate
the entire probability density function associated with an
object.

A. Outline

We will show how relations between objects in camera
images can be used for estimating the object’s position within
a given map. We will present experimental results using a
Monte-Carlo Particle Filter to track the ball. Furthermore,
we will show how communication between agents can be
used to combine incomplete knowledge from individual agents
about object positions, allowing the robot to infer the object’s
position from this combined data. In a further step we will
demonstrate how this knowledge about object position can be
used to improve self localization.

Our experiments were conducted on the color coded field
of the Sony Four Legged League using the Sony Aibo ERS-7,
which has a camera resolution of 208 ∗ 160 pixels YUV and
an opening angle of only 55o.

II. OBJECT RELATION INFORMATION

In a RoboCup game, the robots permanently scan their
environment for landmarks as there are flags, goals, and the
ball. We abstract from the algorithms which recognize the ball,
the flags, and the goals in the image as they are part of the
image processing routines. The following section presents the
information gained by each perception.

A. Information gained by a single percept

If the robot sees a two colored flag, it actually perceives the
left and the right border of this flag and thus the angle between

Fig. 1. As testbed served the play field of the Sony 4-Legged League.
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Fig. 2. Single percept: a) When a flag is seen, the robot can calculate its
distance to it, a circle remains for all possible robot positions, b) if a goal is
detected the robot can calculate its distance to the center of a circle defined
by the robot’s camera and the two goal posts. The circle shows all possible
positions for the given goal-post angle. Light grey robot shapes are examples
for possible alternative robot positions and orientations in a given situation;
Two percepts in one image c) a flag and a ball let the robot determine the ball’s
distance relative to the flag dbl; all possible positions of the ball relative to the
flag form a circle, d) the same calculation for a goal and a ball. The circular
arc determines all possible positions for the robot, the spiral arc represents
all possible ball positions.

those two borders. Because the original size of landmarks is
known, the robot is able to calculate its own distance to the
flag and its respective bearing (Fig. 2 a). In the given approach
we don’t need that sensor data for self localization, but for
calculating the distance from other objects as the ball to the
flag.

If a goal is detected, the robot can measure the angle
between the left and the right goal-post. For a given goal-
post angle the robot can calculate its distance and angle to
a hypothetical circle center, whereas the circle includes the
two outer points of the goal-posts and the point of the robot
camera (Fig. 2 b).



If a ball is perceived, the distance to the ball and its direction
relative to the robot can be calculated. Lines or line crossings
can also be used as reference marks, but the sensor model for
lines is more complex than for a goal or a flag as there are
many equally looking line segments on the field. For simplicity
reasons we didn’t use line information in the given approach.

B. Information gained by two percepts within the same image

If the localization object is visible together with another
landmark, e.g., a flag or a goal, the robot does not only get
information about distances to both objects but also informa-
tion about the angle between them. With the law of the cosine
the distance from the ball to a flag can be calculated (Fig. 2
c).

When a goal and a ball were seen, a similar determination
of the position can be done for the ball, but the set of possible
solutions leads to a spiral curve (Fig. 2 d). Now we have shown
how object relations can help to constrain the set of possible
ball positions. But we have also seen that one landmark and
one ball alone are not sufficient to exactly determine the ball’s
position. One possibility to overcome this limitation would be
to scan for other landmarks and take this information into
account, but this could be time consuming. Another approach
would be to let the robots communicate and interchange the
necessary information for an accurate object localization. This
has two advantages:

1) Apart from communication time which takes, in our
case, about two or three tenth of a second, information
transfer between robots is cheap in resources, as only
few data needs to be transferred.

2) Many robots can gather more information than a single
robot, because many robots can see more than one robot.

In Fig. 3 we can see a two-agents scenario, where both
agents acquire ball percepts and different landmark percepts.
We get two cirles/arcs, representing the possible ball positions
calculated by each agent. By communicating object relations
between the agents, the intersections of the arcs reduce the
number of possible ball positions to one, or sometimes, two
points. In general, the number of remaining possible solutions
highly depends on the sensor model inferred by the landmark
properties, i.e., the more unique a landmark can be identified
the smaller the remaining solution space for the object position
and/or the observing agent will be.

Now we want to describe a possible implementation of
this approach. As the sensor data of our Aibo ERS-7 robot
are not very accurate, we have to cope with a lot of sensor
noise. Furthermore, the probabilistic distribution is not always
unimodal, e.g., in cases where the observations lead to more
than one solution for possible ball positions. This is why a
simple Kalman filter would not be sufficient [6]. We chose an
implementation using a Monte-Carlo Particle Filter because

Fig. 3. Two agents perceiving the ball position relative to a goal/flag.

of its ability to model multimodal distributions and its robust-
ness to sensor noise. Other approaches as Multi Hypothesis
Tracking or Grid Based algorithms might work also [4].

III. MONTE-CARLO FILTER FOR MULTI AGENT OBJECT
LOCALIZATION

Markov localization methods, in particular Monte-Carlo
Localization (MCL), have proven their power in numerous
robot navigation tasks, e.g., in office environments [3], in
the museum tour guide Minerva [12], in the highly dynamic
RoboCup environment [7], and outdoor applications in less
structured environments [9]. MCL is widely used in RoboCup
for object and self localization [10][8] because of its ability
to model arbitrary distributions and its robustness towards
noisy input data. It uses Bayes law and Markov assumption
to estimate an object’s position. The probability distribution
is represented by a set of samples, called particle set. Each
particle represents a pose hypothesis. The current belief of the
object’s position is modeled by the particle density, i.e., by
knowing the particle distribution the robot can approximate
its belief about the object state. Thereby the belief function
Bel(st) describes the probability for the object state st at
a given time t. Originally it depends on all sensor inputs
z1, .., zt and all robot actions u1, .., ut. But by using the
Markov assumption and Bayes law, the belief function Bel(st)
depends only on the previous belief Bel(st−1), the last robot
action ut−1 and the current observation zt:

Bel−(st)←−
∫

p(st|st−1ut−1)︸ ︷︷ ︸
process model

Bel(st−1)dst−1 (1)

Bel(st)←− η p(zt|st)︸ ︷︷ ︸
sensor model

Bel−(st) (2)

whereas η is a normalizing factor. Equation (1) shows how
the a priori belief Bel− is calculated from the previous
Belief Bel−(st−1). It is the belief prior the sensor data,
therefore called prediction. If we modeled the ball speed, in
the prediction step we would calculate a new ball position,
given the old position plus the current speed and the passed
time since the last state estimation. Also actions of the robot,
changing the ball state must be taken into account. But in
our static situation nothing has to be propagated, because the



ball position is static and the robot is not interacting with the
ball. Furthermore, the ball position is modeled relative to the
field and not to the robot, which makes it independent from
robot motions. In (2) the a-priori belief is updated by sensor
data zt, therefore called update step. Our update information
is information about object relations as described in section II.
Therefore a sensor model is needed, telling the filter how
accurate the sensor data are. The particles are distributed
equally at the beginning, then the filtering process begins.

A. Monte-Carlo Localization, Implementation

Our hypotheses space for object localization has two dimen-
sions for the position q on the field. Each particle si can be
described as a state vector −→s i

−→s i =
(

qi
xt

qi
yt

)
(3)

and its likelihood pi.
The likelihood of a particle pi can be seen as the product of

all likelihoods of all gathered evidences [10], which means in
our case that for all landmark-ball pairs a likelihood is being
calculated. From every given sensor data, e.g., a landmark l
and a ball (with its distances and angles relative to the robot)
we calculate the resulting possible ball positions relative to the
landmark l, as described in section II-B. The resulting arc will
be denoted as ξl. We showed in II-B that ξl has a circular form,
when l is a flag and a spiral form, when l is a goal. The shortest
distance δl from each particle −→s i to ξl is our argument for
a Gaussian likelihood function N (δ, µ, σ), where µ = 0 and
with a standard deviation σ, which is determined as described
in the next section. The sensor model being assumed to be
Gaussian showed to be a good approximation in experiments.
The likelihood is being calculated for all seen landmarks l and
then multiplied:

pi =
∏
l∈L′

N (δl, 0, σ) (4)

In cases without new evidence all particles get the same
likelihood. After likelihood calculation, particles are resam-
pled.

a) Multi Agent Modeling.: To incorporate the informa-
tion from other robots, percept relations are communicated
to other robots. The receiving robot uses the communicated
percepts for likelihood calculation of each particle the same
way as if it was its own sensor data. This is advantageous
compared to other approaches:
• Some approaches communicate their particle distribution,

which can be useful when many objects are modeled
in parallel. But when, as in our examples, two robots
only know the arcs or the circular function on which the
ball could be found, this would increase position entropy
rather than decreasing it. Communicating whole particle
sets can also be very expensive in resources.

• By communicating percept relations rather than particles,
every robot can incorporate the communicated sensor data

to calculate the likelihood of its particle set. Thereby we
get a kind of sensor fusion rather than Belief-fusion as
in case when particle distributions are communicated.

Because of this, we decided to let every robot communicate
every percept relation (e.g., flag, ball) it has gathered to other
robots.

b) Sensor Model.: For the sensor model, we measured
the standard deviation σl by letting a robot take multiple
images of certain scenes: a ball, a flag, a goal and combinations
of it. The standard deviation of distance differences and
respectively angle differences of objects in the image relative
to each other were measured as well. The robot was walking
the whole time on the spot to get more realistic, noisy images.
The experiment results are shown in table 1.8

Object Standard Deviation σ

Distance in mm σDst in mm σAng in Rad

Ball 1500 170 0.015

Flag 2000 273 0.019

Goal 2000 25 0.021

Flag- Ball-Diff. 500 196 0.008

Goal- Ball-Diff. 500 175 0.0054

Table 1. Object Distance Standard Deviations

be found, this would increase entropy rather than decreasing it. Communi-
cating whole particle sets with a 1000 particles, can be also very expensive
in resources.

– by communicating percept relations rather than particles, every robot can
incorporate the communicated sensor data to calculate the likelihood of its
particle set. Thereby we get a kind of sensor fusion rather than Belief-fusion
as in case when particle distributions are communicated.

That’s why we decided to let every robot communicate every percept relation
(e.g. flag, ball) he has gathered to other robots.

Sensor Model. For the sensor model we measured the standard deviation σl

by letting a robot take multiple images from certain scenes: a ball, a flag, a
goal and combinations of it. The standard deviation of distance differences and
respectively angle differences of objects in the image relatively to each other
were measured as well. The robot was walking the whole time on the spot to get
more realistically noised images. The experiment results are shown in table 1.

It can be seen, that the standard deviation for the distance from the ball to
the flag (or goal) is smaller than the sum of the distance errors given a ball and
a flag (or goal). The same can be said for the angle standard deviation. This
gives evidence that the sensor error for percepts in the same image is correlated,
due to walking motions and head swings. Because in our experiments we coped
with static situations only, we could abstract from network communication time
and the delay after which percept relations were received.

4 Experimental Results

The Aibo ERS-7 robot serves as a test platform for our work. We conducted
several experiments with our robots to measure the accuracy and the speed of
the given algorithm and to compare it to a reference algorithm. In the reference
algorithm two robots try to localize and to model the ball in an egocentric
model. As a result each of those robots gets a particle distribution for possible

It can be seen that the standard deviation for the distance
from the ball to the flag (or goal) is smaller than the sum
of the distance errors given a ball and a flag (or goal). The
same can be said for the angle standard deviation. This gives
evidence that the sensor error for percepts in the same image is
correlated, due to walking motions and head swings. Because
in our experiments we coped with static situations only, we
could abstract from network communication time and the
delay after which percept relations were received.

B. Self Localization

For self localization we used the algorithm described in [10].
We used a three dimensional hypothesis space, two dimension
for the field position of the robot and one dimension for its
orientation. As sensor update input data served the angle to
the goal posts and to the flag boundaries as in [10], plus in
our approach, the distance and angle to the modeled ball.

IV. EXPERIMENTAL RESULTS

The Aibo ERS-7 robot serves as a test platform for our
work. In the first reference algorithm, to which we compare
our approach, two robots try to localize and to model the ball
in an egocentric model. As a result each robot maintains a
particle distribution for possible ball positions, resulting from
self localization belief and the locally modeled ball positions.
In our situation neither robot is able to accurately determine
the ball position (Experiment A,B). In the next step the two
robots communicate their particle distribution to each other.
After communication each robot creates a new particle cloud



as a combination of its own belief (the own particle distri-
bution) and the communicated belief (communicated particle
distribution). We want to check how this algorithm performs
in contrast to our presented algorithm in situations, where self
localization is not possible, e.g., when every robot can only see
one landmark and the ball. In our first experiment, we placed
both robots in front of a different landmarks with partially
overlapping fields of view, such that both robots could see the
ball (Fig. 4).

a) b)

Fig. 4. Experiment A - two flags: a) no percept relations communicated,
the robots are self localizing (arrows show SL-particles of the upper robot
schematically), the ball positions (cloud of dots) are modeled egocentricly and
then transformed into global coordinates. The globally modeled ball particle
distribution is then communicated to the other robot and merged with its ball
particle distribution. b) No self localization needed, percept relations used
as described, two robots communicating object relations for calculating the
particle distribution; the small circle at the center line marks the real ball
position in the given experiment

One can see from the experiments that there is almost no
convergence to a confined area for the case in which the
two robots are communicating their particle distributions to
each other. In case of percept communication, the particle
distribution converges nicely to a confined area. The entropy of
the particle distribution confirms this quantitatively; as shown
in Fig. 6 a), the entropy is decreasing slightly because the
particle distribution converges circular to the flags, but not to
a small area. Thus the entropy decrease is much higher in case
where percept relations are communicated as Fig. 6 a) shows.

In our second experiment, we placed one robot in a way
that it could see the flag and the ball, the other one in front
of a goal and a ball (Fig. 5 a,b). Again we let the robots try
to self localize and communicate their particle distributions.
Later, we compared the result to the algorithm making use of
percept relations. In the first case, no convergence of particles
to a certain area was visible as before. The particle distribution
can be interpreted as a union of the loop like distribution of the
robot seeing the goal and the ball, combined with the circular
distribution of the robot seeing the flag and the ball.

a) b)

c) d)

Fig. 5. Experiment B - one robots sees a goal (a) and another robots sees
a flag (b); c) both robots are communicating their particle distribution, after
trying to self localize and transforming their local particle distribution for the
locally modeled ball into a distribution, based on field-coordinates, similarly
to Fig. 4 a). In d) two robots are communicating object relations.

Our presented algorithm performed nicely again, leaving
two remaining areas for the modeled ball position. Also
the entropy was decreasing more in case of communicating
percept relations compared to communicating particle distri-
butions 6 b). Furthermore, the entropy (Fig. 6) for two seen
flags (experiment A) remains lower than for a goal and a flag
(experiment B), because the second possible ball position was,
in case A, outside the field. Fig. 6 shows also that the particle
distribution converged very quickly.
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Fig. 6. The entropies for particle distributions using object relations (solid
blue line) vs. not using object relations (dotted orange line). a) Experiment A,
two seen flags: using object relations leads to a much lower entropy b) one
goal, one flag: also a much lower entropy when using object relations instead
of particle distribution communication; It can also be seen, that convergence
of the particle distribution takes just a part of a second.

In the next experiment we put one robot in front of a flag and
a ball and let it try to localize. The next reference algorithm we
used was the self localization approach as described in [10]. As
the robot could only see one landmark, the particle distribution
did not converge to a certain area, two circle like clouds
remained, one for the ball and one for the self localization
particle distribution (fig. 7 a). As one can see, accurate self



localization was not possible. Neither was it possible in case
for two robots not interchanging percept relations, because
the ball particle distribution did not converge as in fig. 4 a).
But when we took two robots and let them determine the
ball position using percept relations, a robot can use its own
distance and angle to the ball for improved self localization.
Fig. 7 b) shows that self localization could be improved when
using percept relation and the resulting ball position data.
The lower entropy of the self localization particle distribution
proves quantitatively, that using position data from objects
modeled in allocentric coordinates can reduce uncertainty in
self localization (fig. 8).

a) b)

Fig. 7. Experiment C - Ball and robot localization: a) one robot is perceiving
the ball and self localizing by the upper flag. A circular particle distribution
remains for the robot positions (bigger circle) and the ball positions (smaller
circle); b) two robots localizing the ball with percept relations, the upper
robot is localizing, using its distance to the upper flag and its distance to the
modeled ball position. Two particle clouds can be seen, one for the ball, one
for the robot.
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Fig. 8. The entropies for particle distributions of the self localization process
(Experiment C). The orange line shows the self localization entropy when no
object relations were used. Entropy decreases when perceiving the flag but
remains at a high level; The self localization entropy becomes much lower
when using visual object relations for ball modeling.

V. CONCLUSION

Object relations in robot images can be used to localize
objects in allocentric coordinates, e.g., if a ball is detected in
an image next to a goal, the robot can infer something about
where the ball is on the field. Without having to be localized at
all, it can accurately estimate the position of an object within

a map of its environment using nothing but object relations.
Furthermore, we were able to show how the process of object
localization can be sped up by communicating object relations
to other robots. Two non-localized robots are thus able to both
localize an object using their sensory input in conjunction with
communicated object relations. In a next step we showed how
the gained knowledge about allocentric object positions can
be used for an improved Markov self localization.

Future Work. Future work will investigate the use of other
landmarks (e.g., field lines) for object localization. Current
work tries to extend the presented approach to moving objects,
letting the robot infer not only about the position but also about
the speed of an object. An active vision control, trying to look
at two objects at once is also being developed.
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