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Abstract— Cooperative Simultaneous Localization and Map-
ping (C-SLAM) is an active research topic in mobile robotics.
However, its application in the field of autonomous driving is
rare. While the advent of Vehicle-to-Everything (V2X) com-
munication has empowered Connected Autonomous Vehicles
(CAV) to exchange data with each other, recent research on
CAV cooperation tasks has primarily focused on cooperative
perception and global positioning improvement. Techniques
for organizing multiple CAV to work together to achieve
localization and mapping in unknown environments have not
been actively explored. We propose a C-SLAM system for CAVs
that employs sparse LiDAR feature representations to enable
vehicles to exchange data using standard V2X messages. The
system was tested in real environments using two connected
vehicles. The results show that the proposed V2X-based C-
SLAM system can operate in both centralized and decentralized
manners and output accurate pose estimates and global maps,
showing promising application possibilities.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is an
essential technique in robotics. In particular, compared with
vision-based methods, laser-based SLAM is widely adopted
in areas such as autonomous driving due to its stronger
resistance to environmental disturbances and higher mea-
surement accuracy. Multiple robots cooperating with each
other can complete localization and mapping tasks faster and
more accurately than a single robot, which is particularly
advantageous in large-scale environments. The problem to
be solved by C-SLAM is to coordinate a group of robots
and use all the data to build a consistent global map and,
at the same time, localize themselves on the map. It has
better robustness than single-robot methods. The failure of a
single robot will not affect the completion of the entire task.
However, the cost of obtaining these benefits is the need
to deal with problems such as communication, coordination,
and information fusion.

The V2X technique endows autonomous vehicles with
the ability to communicate with other vehicles and smart
roadside facilities, making it possible to share data and
collaborate among networked nodes. It was developed to
enable reliable communication between CAVs while driving
at high speeds in urban or highway traffic. Extensive research
on the cooperative perception and vehicle global positioning
of connected vehicles through V2X communication has re-
cently emerged. Nevertheless, the exploration of V2X-based
Cooperative SLAM has remained relatively scarce.
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Fig. 1. Demonstration of the proposed V2X-based C-SLAM approach
running in a centralized manner. The green car performs localization and
mapping while using the received perception data to estimate the state of
the red car. The green dots and cyan lines represent the map points of the
green car and its measurements of the visible map points at each frame. The
red dots and purple lines are the map points and measurements of the red
car. The yellow dots highlighted by the orange rectangles represent features
shared by both vehicles, which provide constraints between the two systems.

This paper presents a novel framework for cooperative
SLAM for Connected Autonomous Vehicles. Our proposed
framework offers two distinct operating modes. The first
mode employs V2X communication to transmit perception
data among a group of vehicles, which enables the creation
of a global map and trajectories of all participating vehicles
on one of the vehicles. This mode operates in a centralized
manner. The second mode enables vehicles to exchange local
maps rather than perception data. Each vehicle estimates its
poses, creates its local map and merges it with the received
maps. This mode operates in a decentralized fashion. The
main contributions of our work include the following:
• We investigated the feasibility of implementing V2X-

based C-SLAM in both centralized and decentralized
manners.

• We developed a framework utilizing sparse representati-
ons of map and perception information that can operate
efficiently in V2X networks with limited communicati-
on capabilities.

• We conducted real-world tests using two V2X connec-
ted vehicles and obtained highly accurate localization
and mapping results.

These contributions represent a significant step forward in
exploring cooperative SLAM for connected vehicles based
on V2X communication. The remaining paper is arranged
as follows: Section II lists the related research of C-SLAM
and the application of V2X in the field of Intelligent Trans-
portation Systems (ITS). Section III details the proposed



method. Sections IV and V present the experimental results
and summarise the work.

II. RELATED WORK

Due to its broad application scenarios, cooperative SLAM
is an active research topic in mobile robotics. Depending
on where the data obtained by the robots are processed, C-
SLAM systems can generally be divided into two categories:
Centralized methods [1], [2], [3], in which all information
is brought together in a powerful server or management
robot, and decentralized [4], [5], [6] approach, where all
robots communicate with each other, and the computations
are performed locally on each node.

Like in single-robot SLAM systems, filtering methods
were widely used to solve C-SLAM problems. Early C-
SLAM researchers tried to extend various filtering-based
single-robot SLAM methods to multi-robot environments.
Zhou et al. [7] used the EKF method to fuse robot poses
and landmark positions. This method required the robots in
the team to identify each other and measure their relative
poses in order to merge the global map. Particle filtering
methods [8], [9], [10] were also proposed to solve grid-map-
based or feature-based C-SLAM problems. In addition, the
application of information filtering methods in C-SLAM has
been examined [11].

The application of graph-optimization-based SLAM in
multi-robot environments has also been extensively studied.
Graph optimization searches for the maximum posterior
estimate of the system. Cunningham et al. [12] introduced a
distributed C-SLAM solution based on a Constrained Factor
Graph. The simulated test showed that a consistent feature
map could be produced. Dubé et al. [13] adopted iSAM2 [14]
and implemented a centralized multi-robot SLAM for 3D Li-
DAR, having the sub-map association done using SegMatch
[15]. Indelman et al. [16] presented a pose graph-based multi-
robot localization solution. High robustness for outliers was
shown through real data. DCL-SLAM [17] proposed a distri-
buted framework that leverages existing single-robot LiDAR-
based SLAM methods to enable collaborative localization of
multiple robots. Swarm-SLAM [18] also provided an open-
source, decentralized multi-robot SLAM framework capable
of supporting different types of sensors, such as LiDAR,
stereo, and RGB-D cameras.

Communication is the basis for multiple robots to share
data. Processing delays, message losses, and other commu-
nication issues are essential to C-SLAM. Extensive studies
have focused on the C-SLAM problem in cases of limited
communication [19], [20], [21]. In the field of Intelligent
Transportation Systems, the application of V2X technology
makes intelligent vehicles no longer isolated individuals;
instead, they can communicate with the roadside, cloud, and
other vehicles, enabling them to complete more complex
collaborative tasks while driving normally in urban and non-
urban traffic like on highways.

In Europe the ITS-G5 standard [22] is used for V2X
communication. ITS-G5 is based on IEEE 802.11p also
known as WAVE which is a modification of the IEEE

802.11a wireless standard. It has been specifically designed
to tackle communication issues at higher speeds. Lin et
al. [23] compared IEEE 802.11a with its modification for
V2X showing the advantages of IEEE 802.11p in real-world
scenarios and usual urban traffic speeds.

Recent research on V2X-based cooperative tasks has focu-
sed more on the area of cooperative perception. Researchers
[24], [25] fused LiDAR information from different vehicles
to obtain more comprehensive surrounding object detection.
Xu et al. [26] integrated information from roadside units
to complement the vehicle’s environmental understanding.
Where2comm [27] explored new methods to improve com-
munication efficiency in cooperative perception. OPV2V [28]
provided an open benchmark dataset for V2V-based coope-
rative perception. Recently, real-world cooperative datasets
[29], [30] have been released to advance related research.
Unlike the above topics, research about cooperative SLAM
using V2X communication is rare in the literature.

III. METHOD

A. V2X Communication

Our work explores a solution that shares LiDAR-detected
landmarks, vehicle poses, and local maps among connec-
ted vehicles only via the V2X network using Collective
Perception Messages (CPM) [31] and Cooperative Awaren-
ess Messages (CAM) [32], enabling multiple vehicles to
work cooperatively to explore the surrounding environment.
All messages are sent with the ITS-G5 default channel
bandwidth of 10 Hz using QPSK (Quadrature Phase Shift
Keying) modulation and 1/2 FEC (Forward Error Correction)
rate, providing theoretically up to 6 Mib/s available data
rate, shared between all communicating vehicles. We utilize
channel 180 and limit the number of features transmitted in
each CPM to 50 to stay below the maximum V2X message
size of 1400 bytes [33]. To be able to communicate our
perception data and maps, we extended the CPM ASN.1
definition [34] as follows (extensions in bold):

OtherSublassType ::= INTEGER {
unknown(0), roadSideUnit(1), pole(2),
wallSegment(3), wallEdge(4)} (0..255)

B. System Overview

Fig. 2 shows the structure of the proposed C-SLAM
system. We take data from the LiDAR sensor and wheel
odometry as input. α Pk represents the input of the LiDAR
frame k of robot α . α Ť k−1

k is the prior motion transformation
given by wheel odometry. The Detection module obtains the
features of interest α Fk from the input and passes it to the
Odometry and Mapping module. Integrated with the prior
values, the LiDAR Odometry estimates the robot’s motion
transformation α T k−1

k . The Mapping module obtains the
robot’s pose α TW

k in the map coordinate system through local
map optimization. Then the system outputs the optimized
vehicle poses at 100 Hz and builds the feature map. The
Cooperation module exchanges the current local map α Mk,
perception α Fk and pose α TW

k with other vehicles through
the V2X network via CAMs and CPMs. Information from



Fig. 2. Schematic representation of the Cooperative SLAM system. A vehicle uses its own sensor information to achieve localization and mapping while
exchanging location, perception, and map information with other vehicles through the V2X network.

Fig. 3. In the decentralized operation, when two vehicles are within sensor
perception range of each other, they start sending local maps to the V2X
network.

Fig. 4. Successfully merged maps, different colors indicate that they are
from different vehicles.

other vehicles is sent to the Odometry and Mapping module,
which merges with and updates the current map.

C. Cooperation

We have designed two inter-vehicle cooperation strategies
to support the proposed C-SLAM system operating in two
different modes.

1) Perception Data Exchange: In this setup, the vehicles
participating in the C-SLAM task need to keep within
communication range. That is, they can hear each other. Each
vehicle processes its sensor information in real-time, building
its trajectory and a local map. Then the features extracted

from each LiDAR frame and the current pose are sent over
the V2X network as CPMs at 10 Hz, the same rate as the
LiDAR measurements. The cooperation module listens to the
perception information from other vehicles. With received
perception data, the system estimates the driving path and
builds a local map for each vehicle it can hear.

The map merging algorithm will be triggered when these
local maps have overlapping areas. Inter-robot data associati-
on can be achieved by matching these two sets of overlapped
features. Then the global optimization will be performed to
obtain a consistent map. From a data fusion perspective,
each vehicle operates in a (redundant) centralized fashion
in this setup, computing trajectories and a global map for
all vehicles. We can leave one vehicle for centralized data
processing, while other vehicles are only responsible for
sending data.

2) Local Map Exchange: Each vehicle runs the SLAM
system independently in this operation mode. They broadcast
their positions over the V2X network at a low frequency
of 1 Hz, through CAMs. When two vehicles are within
their communication range and can hear each other, they
calculate and track the distance between them by processing
the received messages.

When two vehicles are close enough that their sensor
detection ranges overlap, we say they can see each other. In
this state, the Cooperation module triggers the map transfer
action. The local map of the ego vehicle is encoded into
a series of CPMs and sent over the V2X network at 20
Hz. It simultaneously listens to the network and receives
map messages from vehicles that it can see, as illustrated in
Fig. 3.

When the ego vehicle receives a map from another car, it
will try to merge the received map with its local map. As
shown in Fig. 4, the ego vehicle (shown in green) receives a
map from another vehicle (the second vehicle and its map are
shown in red) through the V2X network and merges it into
its local map (shown in green), the yellow poles represent the
shared features. As a result, the vehicle acquired map data
of the unexplored region and can continue driving, achieving
self-localization on the expanded map.

In this setup, the vehicles participating in the task operate



Fig. 5. Factor graph representation of the proposed C-SLAM system. Two
sets of features (in red boxes) from different robots are matched to connect
the two systems.

in a decentralized fashion. Each vehicle independently runs
a SLAM system to compute its state and map and then share
the local map with other vehicles through V2X communica-
tion.

D. Problem Formulation

The Feature Detection module extracts the pole-like struc-
tures from the LiDAR range image. In real environments,
these are usually tree trunks, poles of street lights, or traffic
signs. Such features are common in urban road environments
and are therefore frequently adopted in localization and
mapping-related research [35], [36]. More importantly, pole-
like structures are an essential element in high-definition city
maps. Therefore, pole-based SLAM systems have potential
applications in the automated updating and expansion of
high-definition maps. We adopt the feature detection method
described in [37]. The extracted poles are projected onto the
ground, and their geometric centers are used as measurement
points. Additionally, the wheel odometry is taken to describe
the motion of the robot. With these two types of information,
we can model the motion and measurement error as follows:

eu,rk = f (xrk−1,urk)− xrk

ez,rki = h(xrk,mri)− zrki
(1)

where f is the motion function and h is the measurement
function. xrk represents the pose of the robot r at time k,
mri is feature i in the map of robot r, and zrki represents the
measurement of feature i at time k of robot r. Then we can
formulate the multi-robot SLAM problem in both centralized
and decentralized forms.

1) Centralized C-SLAM: We use X = {xrk}R,Kr
r=1,k=1 to

represent the poses of all robots. All involved features
are represented by M = {mri}R,Ir

r=1,i=1. U = {urk}R,Kr
r=1,k=1 are

the input values of all robot odometry data and Z =
{zrki}R,Kr ,Ir

r=1,k=1,i=1 are all measurement values. Assuming that
motion and observation noises are independent at all time
frames, we can define the C-SLAM problem as a MAP
(Maximum A Posteriori) estimation:

X∗,M∗ = argmax
X ,M

P(X ,M|U,Z) = argmax
X ,M

P(X |U)P(Z|X ,M)

= argmax
X ,M

∏
r,k

P(xrk|xrk−1,urk)︸ ︷︷ ︸
odometry

∏
r,k,i

P(zrki|xrk,mri)︸ ︷︷ ︸
measurement

(2)

Note that (2) does not explicitly show how constraints
between robots are handled. Fig. 5 shows the C-SLAM
problem represented as factor graphs. Large circles represent
robot states, and small circles the features on the map. The
red and green dots represent the odometry data and the
measurements of features, respectively. In the upper part
of Fig. 5, two groups of feature points from robot α and
robot β are matched through inter-robot data association,
as highlighted in red rectangles. Once the data association
succeed, the factor graph of robot α and robot β has been
merged together as shown in the lower part of the figure. To
write the merged factor graph in a mathematical form we
can take the negative logarithm of (2) and substitute (1) into
it. We then get:

X∗,M∗ = argmin
X ,M

(− logP(X ,M|U,Z))

= argmin
X ,M

R

∑
r=1

Kr

∑
k=1

eT
u,rkΣ

−1
u,rkeu,rk︸ ︷︷ ︸

odometry

+
R

∑
r=1

Kr

∑
k=1

∑
mi ̸∈S

eT
z,rkiΣ

−1
z,rkiez,rki︸ ︷︷ ︸

non−shared f eatures

+
R

∑
r=1

Kr

∑
k=1

∑
mi∈S

eT
z,rkiΣ

−1
z,rkiez,rki︸ ︷︷ ︸

shared f eatures

(3)

(3) shows that the error of the whole system can be divided
into three parts: the error of the odometry data from all
robots, the observation error of the features that can only
be observed by a single robot, and the observation error of
the features that are shared by multiple robots. S is the set
of shared features and Σ−1 is the inverse of the covariance
of the errors. (3) can be solved using non-linear solvers such
as Gauss-Newton and Levenberg-Marquardt methods.

2) Decentralized C-SLAM: In a decentralized system,
each robot only estimates its state and builds its local map
independently before receiving maps from other robots. In
this step, each robot only processes its own odometry and
sensor measurements. Therefore, the estimation of the local
poses and the local map of robot α can be described as a
single-robot SLAM problem:

X∗α ,M
∗
α = argmin

Xα ,Mα

Kα

∑
k=1

eT
u,kΣ

−1
u,keu,k +

Kα

∑
k=1

Iα

∑
i=1

eT
z,kiΣ

−1
z,kiez,ki (4)

After receiving a local map from another robot, the current
robot α will try to find matches between the received



Fig. 6. Autonomous vehicles used to test the proposed method. Both
vehicles are equipped with 360° LiDAR, Applanix POS LV position and
orientation system, and V2X communication devices.

map and its own local map. Map merging will only be
performed after a group of feature matches is confirmed. We
estimate the transformation between two maps with objective
functions:

T α∗
β

= argmin
T α

β

∑
(mαi,mβ i)∈Sαβ

∥mαi−T α

β
mβ i∥2

2 (5)

T α

β
is the transformation from the map coordinates of robot

α to the map coordinates of robot β and (mαi ,mβi) is a
pair of matched features in the inter-robot data association
set Sαβ . After obtaining the optimal estimation of T α

β
, we

update the current map α using the following function:

M∗α ←M∗α ∪T α∗
β

(M∗
β
\Sαβ ) (6)

The new feature points in map β are transformed and
added to the current map α . To obtain an extended map,
the data association and map merging process needs to be
executed for each received map. In case an inter-robot feature
match cannot be found, the received map will be discarded.
After the map is merged, robot α continues to localize itself
on the expanded map, updates it with new sensor data, and
waits for the next map transmitted from the V2X network.

E. Inter-Robot Data Association

To associate the local maps of two robots when they
overlap, a commonly used approach is to identify the objects’
nearest neighbors on the targeted map. However, this method
can easily fail due to system drift over time. Therefore,
we adopt a more robust point pattern matching method,
which has been widely studied in the fields of fingerprint
recognition [38], place recognition, and image matching.
Specifically, we use the RANSAC-based method described
in [37]. Alternative methods, such as the one proposed in
[39] and point registration methods like ICP [40], [41] and
its variants, are also available. After successful matching,
the matched feature pairs are assigned the same ID. In the
centralized scenario, the local factor graphs of the two robots
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Fig. 7. Localization and mapping results around the Olympic Place in front
of Olympiastadion in Berlin. The trajectories generated by the proposed
method were compared with GNSS/INS system, KISS-ICP, and LeGO-
LOAM methods.

can be connected together, as shown in Fig. 5, and the
optimal state of the system can be estimated through non-
linear optimization. In the case of distributed execution, an
optimal transformation between the two groups of points can
be calculated using (5), and the received map is then added
to the current robot’s local map after transformation.

IV. EXPERIMENTS

In this section, we present two experiments in the real-
world environment. We run the proposed algorithm on two
test vehicles. One is equipped with a Velodyne Alpha Prime
128-beam-LiDAR, and the other has a Velodyne HDL-64E
S2 64-beam-LiDAR. Both vehicles have an Applanix POS-
LV 510 GNSS/INS navigation system with RTK (Real-Time
Kinematic) positioning technique and a Cohda MK5 OBU
for V2X communication. The algorithm runs in real-time
on two laptops equipped with Intel Core i9 CPUs. We
verified the feasibility of V2X-based cooperative SLAM and
evaluated the accuracy of the merged map. In addition, we
compared the localization results with a single-robot laser
SLAM method, LeGO-LOAM [42], and a recently proposed
ICP method, KISS-ICP [43]. Each vehicle’s initial position
is estimated by utilizing the on-board GPS.

A. Experiment 1: Centralized Operation

In the first experiment, we performed collaborative map-
ping of an outdoor parking lot using the two test vehicles
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Fig. 8. Comparison of localization and mapping results of the proposed
C-SLAM method with ground truth and state-of-the-art methods.

(hereafter referred to as Car 1 and Car 2). Two vehicles drove
in parallel from opposite sides of the parking lot, exchanging
data simultaneously. For each car, in addition to processing
its own sensor information, it had also to process data from
the other car: it estimated the poses and feature maps for
both cars at the same time. Once the two maps had sufficient
overlap, the map merging process was initiated, followed by
a global optimization of the merged factor graph to estimate
the optimal state of the entire system.

Fig. 7 shows the mapping results, where the green and red
dots represent the map points independently observed by Car
1 and Car 2, and the orange dots represent the shared map
points. The transformation between the two systems can be
calculated through these shared features. We compare the
localization results of the two vehicles produced by Car 1
with LeGO-LOAM and KISS-ICP. As shown in the zoomed-
in area, the proposed method exhibits similar results to these
single-robot methods. The trajectory of Car 1 is closer to
the GNSS/INS values compared to the other methods. The
quantified pose estimation errors are listed in Table I.

Experiment Length[m] Method APE[m] RPE[m]

Exp. 1-Part 1 319
Proposed 0.27 0.01
KISS-ICP 1.43 0.03

LeGO-LOAM 2.33 0.06

Exp. 1-Part 2 285
Proposed 0.38 0.16
KISS-ICP 1.64 0.04

LeGO-LOAM 0.88 0.05

Exp. 2 1202
Proposed 1.47 0.03
KISS-ICP 6.99 0.04

LeGO-LOAM 3.32 0.07

TABLE I
APE AND RPE OF THE PROPOSED METHOD, KISS-ICP AND

LEGO-LOAM.

B. Experiment 2: Decentralized Operation

In the second experiment, the two test vehicles started
outside the communication range from the opposite end of a
test road. As they progressed toward each other, both vehicles
built local maps and transmitted CAMs at 1 Hz to the V2X
network while also listening to incoming messages. Once
the two vehicles come within communication range, they
will receive these messages and obtain the ID and location
information of the other vehicle, thus knowing the distance
between them. When the distance was less than the sensor
detection range (60 meters in the experiment), they sent their
local maps to the V2X network. Upon receipt of the map
from the other vehicle at this stage, they activated the map
merging algorithm to combine the received map with their
local map. After the successful map merge, they continued
driving and localized on the merged map.

Fig. 8 compares the pole map produced by our proposed
method (represented by green crosses) with the ground-truth
map generated by a batch SLAM method (represented by
orange circles). The features in the upper part of the figure
were generated by Car 1, while the lower part of the map
was received through the V2X network, generated by Car 2,
and merged with Car 1’s local map. Upon closer inspection
of the zoomed-in areas, it can be observed that the maps
generated by our algorithm mostly match the ground truth,
albeit with certain displacements.

We compared the trajectory generated by our propo-
sed algorithm with the results obtained from the Applanix
GNSS/INS navigation system, which serves as ground truth,
as well as LeGO-LOAM and KISS-ICP methods. As shown
in Fig. 8, the trajectory of KISS-ICP failed to return to the
starting position, and both KISS-ICP and LeGO-LOAM have
clear offsets at the lower region of this test road. In contrast,
our proposed method demonstrated better consistency with
the ground truth.

Table I presents the Absolute Pose Error (APE) and
Relative Pose Error (RPE) per meter for each of the methods
evaluated, compared to the Applanix-GNSS data. Experiment
1 consists of two parts. Part 1 is Car 1’s trajectory estimated
based on its sensor data (right part in Fig. 7), and Part 2
is Car 1’s estimation of Car 2 from the received messages
(left part in Fig. 7). Our proposed approach achieved smaller
APEs across all test roads. As for RPE, our method integrated



Fig. 9. V2X messages arrive with 1 to 5 ms delay after being send (left box
plots). The remaining plots visualize the velocity of both cars (first row),
the transmitted data in KiB/s while moving (second row), the perception
transfer rate (third row) and the overall transmitted amount of data (last
row) in Experiment 1 (middle column) and Experiment 2 (right column),

wheel odometry data and operated at a higher output rate
(100 Hz) than the other two methods. This yielded superior
relative accuracy in Exp. 1-Part 1 and Exp. 2. However, in
Exp. 1-Part 2, where the poses were estimated from the
received messages, our method no longer had the high-
frequency advantage.

C. Bandwidth and Data Rate

The complete communication data for both experiments
was meticulously logged. The box plots in Fig. 9 present the
transmission delay between the two vehicles, which ranges
from 1–5 ms, with average delays of 2.7 ms and 3.2 ms,
respectively. The first row of data plots in Fig. 9 depict the
velocity of both cars. In both experiments, the cars did drive
normally according to the traffic situation and rules at the
parking lot and the urban street. The second row shows the
data transfer rate and the third row the corresponding percep-
tion transfer rate during the two experiments. In Experiment
1 (middle column), the data was transferred at an average
rate of 9.4 KiB/s, with a peak reaching 13.0 KiB/s. Up to
291 perceptions/s have been transferred there. In Experiment
2 (right column), local maps were exchanged at a higher
frequency, resulting in several data transmission peaks at
around the 50th second, with up to 25.4 KiB/s and up to
542 perception per second. The average data transmission
rate in Experiment 2 was 2.3 KiB/s. The last row of line plots
in Fig. 9 visualize the total amount of data communicated
during the two experiments. Specifically, Experiment 1 and
Experiment 2 transferred a total of 833.2 KiB and 457.2 KiB
of data, respectively.

V. CONCLUSIONS

This paper proposes a multi-vehicle cooperation frame-
work for simultaneous localization and mapping tasks that
utilize V2X messages for data exchange between vehicles.
The method employs a pole-based sparse representation of

the environment. Therefore, only limited information ex-
change is required, which can be efficiently achieved using
V2X messages. Real-world experiments have been conducted
using two V2X-connected test vehicles, showing that the
proposed method can operate in centralized and decentralized
ways. The results show that our approach can build global
feature maps competitive with offline batch SLAM and
generate trajectory estimations that outperform single-robot
SLAM and recent ICP methods. Future work will focus on
exchanging different types of features, scaling up to large
scenarios, and testing with more connected vehicles.
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