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Abstract— Simultaneous localization and mapping (SLAM)
is an essential technique for autonomous driving. Recently,
combining image recognition technology to generate seman-
tically meaningful maps has become a new trend in visual
SLAM research. However, in the field of LiDAR SLAM, this
potential has not been fully explored. We propose a novel
object-level SLAM system using 3D LiDARs for autonomous
vehicles. We detect and track poles, walls, and parked cars,
which are common along urban roads. This paper presents
how we process the measurement data of three different shapes
of objects to build a graph-based optimization system and
facilitate the geometric distribution of poles to detect loops.
Experiments were carried out on datasets collected with a test
vehicle in city traffic. The results show that our object-level
SLAM system can build precise and semantically meaningful
maps and produce more accurate pose estimations compared
to the state-of-the-art systems on our datasets.

I. INTRODUCTION

The real-time SLAM technique can help autonomous
vehicles build environment models and localize themselves
reliably in unknown environments. It is a critical topic in
autonomous driving research. Both vision-based and LiDAR-
based SLAM approaches have been widely studied, and a
series of important methods have been proposed [1]. In recent
years, researchers in the VSLAM area have combined image
recognition with SLAM to construct object-oriented maps
with semantic information [2], [3]. Compared with traditional
maps based on feature points or occupancy grids, semantic
maps have the advantage of information richness [4]. Robots
can better understand their surroundings using this type of
map.

In the field of LiDAR SLAM, due to the sparsity of
laser scanning points, it is naturally more challenging to
obtain semantic information from LiDAR measurements
than images. Therefore, research on LiDAR-based semantic
SLAM is less explored compared to visual semantic SLAM.
Some examples are [5] and [6]. However, with the advantage
of having more precise measurements, it has the potential
to generate a highly accurate map with semantic meaning,
which could benefit robots in many application scenarios.

This paper proposes an object-level SLAM system based
on 3D LiDARs. The algorithm detects poles, walls, and
cars and fuses this information with the ego-car’s wheel
odometry. The system performs real-time object-mapping
and localization, the visualization of the system is illustrated
in Fig.1. The contributions of this paper are as follows:
• We implement a LiDAR SLAM system that can create

a semantic map in real-time and provide more accurate
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Fig. 1. Run time visualization of our proposed object-level LiDAR SLAM
system. The yellow cylinders, the orange planes, and the blue cuboids
represent the detected poles, walls, and parked cars, respectively. Colored
lines connect each frame to the objects it observes. The green line is the
optimized trajectory. The detected and tracked objects provide plenty of
constraints across multiple frames for local optimization. This enables our
algorithm to achieve robust frame tracking and low drift.

vehicle poses than the state-of-the-art systems on our
datasets.

• A new loop detection method using the geometric
distributions of surrounding poles is introduced.

To our knowledge, this is the first object-oriented LiDAR
SLAM system that processes circular, line-shaped, and rec-
tangular objects at the same time.

II. RELATED WORK

SLAM is an important topic in robotics research. In the
past two decades, many researchers have been involved
in exploring solutions to this research problem. Extensive
research results have been published and shared in the rese-
arch community. Especially in vision-based solutions, many
feature-points-based [7], direct [8] or semi-direct methods
[9] have presented great reliability and accuracy. In the field
of LiDAR SLAM, assisted by the high accuracy of LiDAR
measurement, many methods have achieved low-drift pose
estimation and high-consistent map construction, such as
the ICP-based approaches [10], feature-point-based methods
[11], and landmark matching [12] methods.

Recently, great progress has been made in vision-based
object recognition. Researchers have tried to add semantic
information to the SLAM system and build informative
environment maps [13], [14], [15]. One category of ap-
proaches applied neural network methods to partition the



Fig. 2. The pipeline of the proposed object-oriented SLAM system. A detection and tracking module finds vehicles, walls, and poles from the LiDAR
data. The measurements of the objects and wheel odometry are integrated to build a factor graph for pose estimation. A loop detection module searches
for loops from the detection, and a mapping module produces an object-based map of the environment.

map generated by SLAM systems and assigned semantic
labels to the segments [14]. Another type of approach is
so-called ’object-oriented SLAM’ [16], [17], [18]. These
systems recognize objects at run-time and use them to refine
poses continually.

Semantic SLAM using information from LiDARs is not a
widely explored field. One example is SegMap [19], which
divided 3D point clouds into segments with three types of
meaningful descriptors (vehicles, buildings, and others). It
is shown that object detection assists the data association
process and reduces drift. The research in [5] built a surfel-
based dense map with semantic labels using the ICP method.
The study in [20] proposed an end-to-end method to discover
trees and estimate their diameters in the forest. This work
extended the previous work from [11] by adding tree and
ground labels to the laser points.

The above-introduced LiDAR SLAM systems performed
data matching and map building at the point cloud level.
Unlike these works, the system proposed in this paper detects
and tracks three types of objects that can be commonly found
in the urban street, including poles, walls, and stationary
vehicles. These objects are represented as 2D shapes and
can be processed efficiently.

III. LIDAR OBJECT SLAM SYSTEM

This section introduces the main parts of our proposed
SLAM method for autonomous driving in urban environ-
ments. First, we will introduce the selected objects for
creating the semantic map and the corresponding detection
methods. Then, we will explain the methodology for pose
estimation and map update, and finally, the loop detection
method will be described. Fig.2 gives the pipeline of the
system. The input data are LiDAR range images and the
wheel odometry. A detection and tracking module obtains
the objects of interest from the input. The measurement
data of objects are separated into two categories. The pose-
related measurements are integrated with wheel odometry to
build a factor graph for state estimation. The scale-related

Fig. 3. An illustration of object detection. The top section of the figure
shows the targeted objects in 3D space. The middle section shows the
measurement data we are interested in after projecting the objects onto
the ground plane. The bottom section of the figure presents the detection
and tracking results while the algorithm is running on a test dataset.

measurements are sent to the mapping module to adjust the
size of the mapped objects. Detected poles are also used for
loop finding. The output of the system is optimized vehicle
poses at 100 Hz, and an object map with semantic meaning.

A. Object Detection

Walls and pole-like structures such as tree trunks, street
lights, and traffic signs are long-term stable landmarks.
They are considered to be robust features for localization
and mapping. To recognize poles and walls, we search for
measurement segments from each laser scan line on the
range image that could belong to an object according to the
measurement points’ geometric properties. And then merge



the scan segments vertically to obtain the desired objects.
The detailed implementation can be found in [21].

To extend the proposed SLAM system’s applicable sce-
narios and enable vehicles to localize themselves in areas
with fewer poles and walls, we expanded the objects to
parked vehicles on the side of the road, which are also
distinguishable in the LiDAR measurements. They can effec-
tively increase both the type and number of landmarks, and
therefore improve the robustness and accuracy of a SLAM
system.

In order to detect parked cars, we use a multi-object
tracker. It implements a complete stack of functions to
detect and track static and dynamic objects. The detection
is performed on LiDAR range images de-skewed using the
wheel odometry. Then we remove the ground pixels, cluster
the remaining pixels into objects, and project them onto
the ground plane. A bounding box is fitted for each object
by the rotating caliper algorithm [22]. The states of the
objects are filtered by an Interacting Multiple Model Kalman
filter. Then the object class can be evaluated based on the
measured length, width, and height, the motion type and, if
available, on the roadmap location. The bottom section of
Fig. 3 illustrates the results of object detection and tracking.

B. SLAM with LiDAR Objects

The object detector reports measurements of poles, wall
segments, and parked vehicles while driving in the urban
environment. The detection of objects was conducted in 3D
space and then projected them onto the ground. Therefore,
we receive circles, line segments, and rectangles as the
measurements of poles, walls, and vehicles, respectively, as
can be seen in the top and middle section of Fig. 3. The
measurements of three types of objects can be denoted as
zp, zl , and zv:

zp,i = [xi,yi,ri]
T

zl,i = [x1i,y1i,x2i,y2i]
T

zv,i = [xi,yi,θi,wi, li]T ,

(1)

where xi, yi, and θi are the geometric center and the ori-
entation of a detected object. ri is the radius of a pole.
For walls, the start and end point of the corresponding line
segments are given. wi and li stand for the width and length
of a detected parked vehicles. Then we separate position
and orientation information from the measurements for back-
end optimization and extract the scale information for map
update. The motion and measurement error can then be
written as follows:

eu,k = f (xk−1,uk)− xk

ep,ki = πp(zp,ki)−hp(xk,mi)

el,ki = πl(zl,ki)−hl(xk,mi)

ev,ki = πv(zv,ki)−hv(xk,mi),

(2)

for each frame in time k, f is the motion function,
hp,hl , and hv are measurement functions of poles, lines,
and vehicles, respectively. πp extracts the first two elements

of zp,ki, which give the center position of a pole. πv takes
the first three elements of zv,ki, which represent the pose of
the rectangle. For walls, the function is πl(zl,ki) = [ρki,φki]

T ,
where ρki is the perpendicular distance from the sensor origin
to the line where the line segment is located, and φki is the
angle between the sensor’s x-axis and the line. Note that a
wall segment is modeled as an infinite line represented by
these two parameters in the back-end optimization.

To formulate our object-level SLAM problem, we use X =
{xk}K

k=1 to represent vehicle poses in SE(2) along K frames.
Assume the object map is M = {mi}I

i=1 and M = {P,L,V},
where P,L, and V are sets of poles, lines, and vehicles. The
inputs from the odometry are U = {uk}K

k=1. Z∗ = {z∗ki}
K,I
k=1,i=1

are measurements of map elements at each pose, processed
through function πp,πl , and πv. We can write the SLAM
problem as

P(X ,M|U,Z∗) ∝ ∏
k

P(xk|xk−1,uk)︸ ︷︷ ︸
odometry

∏
k,i

P(z∗ki|xk,mi)︸ ︷︷ ︸
measurement

(3)

For data association, i.e. to determine a measurement value
zki is an observation of which map element, we use the me-
thod introduced in [21] to match poles and walls. To associate
measurements of parked vehicles, we can conveniently take
tracking IDs in the measurements to find the corresponding
object in the object map. However, vehicle tracking ID is not
globally consistent. When the tracker re-discovers a vehicle,
a new ID will be assigned to it. In this case, we use the center
point of vehicles for nearest neighbor matching to obtain
the association between the vehicle and the mapped objects.
Newly discovered objects are temporarily kept and will be
permanently retained on the map once they are confirmed by
adequate observations.

Now we can obtain the optimal estimates of poses and
map objects by maximizing the posterior probability of (3),
assuming the motion and observation noises are independent
and follow Gaussian distribution. Substitute (2) to (3), we
can get:

X∗,M∗ = argmax
X ,M

P(X ,M|U,Z∗) = argmin
X ,M

−logP(X ,M|U,Z∗)

= argmin
X ,M

K

∑
k=1

eT
u,kΣ

−1
u,keu,k +

K

∑
k=1

[
∑
i∈P

eT
p,kiΣ

−1
p,kiep,ki

+∑
i∈L

eT
l,kiΣ

−1
l,kiel,ki + ∑

i∈V
eT

v,kiΣ
−1
v,kiev,ki

]
,

(4)
where Σu is the covariance of the input noise. We can esti-
mate its value by using a more precise GNSS/INS navigation
system as reference. Σp,Σl , and Σv are the covariance of the
three types of observations. They are experimentally chosen
in our system. From the above equation, a factor graph
representation is constructed and solved using Levenberg-
Marquardt algorithm iteratively.



Fig. 4. Generated object map on two test roads, aligned with a satellite
map.

C. Map Update

From the measurements of objects in the environment,
we obtain the pose-related values to construct the error
constraints. Then we add them to the optimization graph to
estimate the poses of the vehicle and the map objects. The
measured radius of poles, length of wall segments, and width
and length of parked vehicles are used to update the scales
of the mapped objects. In our object detection algorithm,
we estimate an object’s size according to the laser points
reflected by the object. The accuracy of estimates depends
heavily on the number of laser points returned by the object.
Due to LiDAR sensors’ characteristics, the closer the object
is to the sensor, the greater the angle it occupies in the
sensor’s field of view. Therefore, closer objects reflect more
laser points and the scale measurement is more accurate.

We set a distance-dependent measurement confidence
mci = exp(−di/R) for each scale measurement, where di
is the distance from the sensor’s origin to the center of

the detected object, and R is the detection range of the
sensor. Moreover, measurement consistency is added to the
measurement weight to reduce the contribution of noisy
measurements. Measurement consistency level is computed
as cli = exp(−(si−µ)2/(2σ2)), where si is the current scale
measurement, and µ and σ are the mean and standard devia-
tion of existing measurements of the scale. The weight of a
scale measurement is then set as wi =mcicli. A proportion of
the measurements with the highest weights is used to update
the map objects’ scale value. The weight-based update is not
applied to the walls, as the measured length is not the actual
length of the wall but usually a fragment of it. The new
measurement is merged with the wall in the object map and
extends its length.

As the object tracker tracks vehicles and estimates their
velocity, the dynamic vehicles can be effectively excluded
from the object map.

Fig.4 shows the generated object map aligned with a
highly precise satellite map. Green dots are trees and street
lamps, orange lines are building walls, and blue rectangles
represent parked cars.

D. Loop Detection

We exploit the mapped objects’ geographic distribution to
implement a three-step loop finding and confirmation method
to recognize loops.

Loop frame encoding. First, we choose the loop frame
according to the travel interval from the last marked loop
frame. Reducing the number of frames involved in searching
and comparison can effectively improve computation effi-
ciency. Unlike keyframes, loop frames can be very sparsely
chosen. For each loop frame, we generate a signature for
fast candidate selection and a local observation for loop
confirmation.

We extract binary and ternary rotation invariants from the
distribution of pole objects around the frame. Set P= {pi}M

i=1
represents the center points of the detected poles at the
current loop frame. We can build two sets:

D = {d(pi, p j)) | pi, p j ∈ P , i 6= j}
T = {(d(pi, p j),d(p j, pk),d(pi, pk))|pi, p j, pk ∈ P, i 6= j 6= k},

(5)

where d(.) is the distance function. D and T respectively
represent all the distances between two detected poles and
all the triangles formed by each three of them. We sort the
elements in these two sets and the three variables in each
element in set T in ascending order. The two ordered sets
D′ and T ′ are assigned to the current loop frame as its loop
signature.

To avoid false-positive confirmation as much as possible,
we collect the detections of a loop frame and its k previous
frames. The collected pole positions are transformed into the
current loop frame’s local coordinate system and merged if
a pole is detected multiple times. It is a small-scale local
map around the current loop frame. If the size of this map
is larger than a threshold o, it can be assigned to the current
loop frame as its local observation. Value o needs to be



adapted according to the density of poles in the driving
environment. For the residential area of the city where our
research institute is located, trees and street lights can be
commonly found near the road. The threshold is set to 30
for the experiments described in Section IV.

Candidate loop frame finding. Before confirming a loop,
we first compare the signature of the loop frame to find the
candidate loop frames that are most likely to coincide with
the current loop frame. We can match the elements between
D
′
1 and D

′
2 of two frames if a pair (di,d j) satisfies ‖di−d j‖≤

ε , where di ∈D
′
1,d j ∈D

′
2. The number of matched elements

is denoted as nD. Similarly, the elements between sets T
′

1
and T

′
2 can be matched if a pair of elements (ti, t j) meet the

condition ‖ti,(1:3)− t j,(1:3)‖ ≤ ξ , where ti ∈ T
′

1 , t j ∈ T
′

2 . The
number of matches is denoted as nT .

The similarity S between two loop frames is calculated as
follows:

SD =
2nD

n(D′1)+n(D′2)
, ST =

2nT

n(T ′1)+n(T ′2)
S = βSD +(1−β )ST ,

(6)

where parameter β weights the two type of invariants. The
value ST is more discriminative, so it was given a higher
weight in the experiment. The loop frame(s) with highest
similarity values are chosen as the candidate loop frame(s).

Loop confirmation. In the field of computer vision,
researchers have explored the method and application of
matching two sets of rotated, scaled, and translated points
[23], [24]. These methods can be applied in fingerprint mat-
ching and face recognition, etc. We implemented a simplified
algorithm introduced in [21] to match the observations of the
current loop frame and the candidate frames. If the points
to be matched are sufficient and the spatial distribution of
the poles does not have a large proportion of repetitions,
such matching can be considered reliable. In practice, we
can increase the number of frames that constitute a local
observation to expand its size. In our experiments, we set
the minimum matching rate to 60% and minimum matching
number to 30 to avoid false matching.

IV. EXPERIMENTS

We collected real-world data using a test vehicle. The data
involved in the experiment mainly came from a Velodyne
HDL-64E LiDAR, an Applanix POS-LV 510 navigation
system, and the Controller Area Network bus. The LiDAR
sensor is mounted on the roof of the car. In order to test the
accuracy and reliability of our algorithm in different road
conditions, we collected four datasets of different lengths
and trajectory shapes. The lengths ranged from around 300
meters to 4.8 kilometers. The names and the trajectory
lengths of the datasets are listed in Table I.

We first evaluated the proposed loop detection method on
Test Road 3. In Fig. 5, we mark each historical loop frame
with a different color according to its similarity with the
current loop frame. The interval between two loop frames is
at least three meters. As can be seen from the figure, most
areas of the trajectory are displayed in blue. According to
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Fig. 5. Loop frames are encoded with different colors according to their
similarity with the current loop frame. The true loop is indicated with a
dashed green line. The zoomed-in area on the upper right corner shows the
matching result of the observations of the current loop frame and the best
candidate.

the color coding, this means most loop frames have very low
similarity with the current loop frame. Only in the vicinity
of the true loop area, as shown in the zoomed-in area in the
upper left corner, is the similarity value significantly larger.
The green dashed line connects the current loop frame and
the best matched historical loop frame. The zoomed-in area
in the upper right corner shows the local observations of
the current loop frame and the best candidate loop frame.
They are collected from a loop frame and its 5 previous
frames, transformed into the loop frame’s local coordinate.
The point pattern matching algorithm found a transformation
between the two sets of points, which corresponded more
than 60% of current observations with the observations of
the candidate loop frame. Thus the loop is confirmed. The
matched observations are connected with grey lines shown
in the upper right area.

To verify the accuracy of poses estimated by our system,
we compared our proposed method with A-LOAM, which is
an advanced implementation of LOAM [11], ICP Mapping
[25], LIO-SAM [26], which fuses LiDAR and inertial sen-
sors. As ground truth, we took the trajectories reported by our
GNSS navigation system. Integrated with wheel odometry,
our method estimate poses at a frequency of 100 Hz. The
GNSS/INS reports the vehicle poses at 200 Hz, and other
methods process the LiDAR data at 10 Hz. Note that LIO-
SAM uses keyframe technique to reduce the computation;
therefore, the poses on its trajectories are sparser. We took
the IMU data from the GNSS/INS system and raw LiDAR



point cloud as inputs for LIO-SAM, and de-skewed point
cloud for all methods. We show the trajectories reported by
all methods on our test datasets in Fig. 6 to Fig. 9.

Fig. 6 shows the results of all methods on a short and
straight road with no loops. Taking the GNSS/INS result
as the reference, the end-to-end translation errors for the
proposed method, ICP Mapping, A-LOAM, and LIO-SAM
are 0.67, 1.59, 3.14, and 11.80 meters, respectively. They are
respectively 0.23%, 0.54%, 1.06%, and 4.01% of the total
trajectory length. The output trajectories of various methods
on Road 3 are shown in Fig. 7. Since the detection range
of the LiDAR covered both sides of the road, when the
vehicle drove back through the u-turn, the new data could
be matched with the already-generated map. Therefore, all
trajectories could return to positions near the starting point.
Nevertheless, we can still observe that the path of A-LOAM
shows a rotation compared to the ground truth. LIO-SAM
reported a path longer than other methods. Furthermore, its
trajectory lacked smoothness in the turning area due to the
selection of keyframes.

Fig. 4 shows the maps generated on Test Road 2 and
another road at different scales. The green circles represent
the poles, and their size indicates their radius but is enlarged
for better visibility. A closer look will show that the maps
are globally consistent: the generated walls conform to the
buildings’ outline, vehicles are in the parking area, and the
poles coincide with the footpoints of the trees and street
lamps all along with the maps.

Road 3 and Road 4 have longer trajectory lengths, and they
were more challenging compared to the other two test roads.
In Fig. 8 we can see that the ICP methods revealed a large
drift. The shapes of trajectories generated by other methods
are very similar to the reference. Road 4 is a rectangular
residential area with a length of 4.8 kilometers. Our proposed
system showed a significant advantage on this test road.
Compared with other methods, its trajectory shows high
consistency with the ground truth. The end translation errors
of end points were 3.58, 50.64, 32.49, and 53.79 meters for
the proposed method, ICP Mapping, A-LOAM, and LIO-
SAM, respectively. We noticed that A-LOAM’s end point
error was smaller than ICP Mapping and LIO-SAM, but
its trajectory had the largest distance from the ground truth.
Similar to the result on Road 2, A-LOAM’s trajectory also
showed a rotation on this test road.

To quantitatively evaluate and compare various methods,
we chose three metrics: the Absolute Pose Error (APE),
which directly calculates the difference between the esti-
mates and the ground truth; the Relative Pose Error (RPE),
which evaluates the local accuracy of the trajectory, i.e. the
local displacement in 1 meter compared to the reference
[27]; and aligned Absolute Trajectory Error (ATE) [28],
which is suitable for evaluating the similarity of trajectory
shapes. Table II lists the results of our method, ICP Mapping,
A-LOAM, and LIO-SAM on the test datasets. For those
methods whose results are expressed in three-dimension,
we directly project their results into two-dimension for
comparison. The statistics show that our method outperforms

Road Trajectory Length [m] Loop
Test Road 1 294.71 No
Test Road 2 1188.71 Yes
Test Road 3 2455.78 Yes
Test Road 4 4793.36 Yes

TABLE I
DETAILS OF THE DATASETS.

Road Method RPE [m] APE [m] ATE(aligned) [m]

Road 1
Proposed 0.04 0.36 0.18

ICP 0.10 1.55 0.35
A-LOAM 0.11 3.06 0.78
LIO-SAM 0.15 8.35 4.48

Road 2
Proposed 0.04 0.71 0.57

ICP 0.09 0.71 0.38
A-LOAM 0.09 5.76 0.38
LIO-SAM 0.16 7.51 7.43

Road 3
Proposed 0.04 2.57 1.57

ICP 1.18 69.20 64.01
A-LOAM 0.15 10.42 4.13
LIO-SAM 0.18 10.76 5.78

Road 4
Proposed 0.04 3.77 1.47

ICP 0.07 40.53 14.91
A-LOAM 0.09 98.45 7.93
LIO-SAM 0.13 34.36 12.74

TABLE II
RESULTS OF PROPOSED METHOD, ICP MAPPING, A-LOAM AND

LIO-SAM ON THE TEST DATASETS. TRAJECTORIES ARE SHOWN IN FIG.
6, 7, 8, AND 9

others in almost all comparisons. The only exception is on
Road 2; after the trajectory alignment, both ICP Mapping
and A-LOAM showed smaller errors than our method. This
meant that the shapes of their trajectories were more similar
to the ground truth. Note that after aligning the results on
Test Road 4, A-LOAM gave a better ATE value than ICP
Mapping and LIO-SAM, which is explained by its smaller
endpoint error.

In our test, LIO-SAM showed a relatively large error.
As stated by the authors, its performance relies heavily
on the accuracy of IMU data. Also, the keyframe-based
method dropped LiDAR data information while improving
computation efficiency, which produced unsmooth trajectory
in the turning area.

Our proposed method chose poles, walls, and parked
vehicles for localization and mapping. These objects can be
detected in a large number and stably in the test environment.
The tracking of these objects naturally helped the algorithm
to correctly associate measurements with the map and provi-
ded constraints for pose optimization in multiple consecutive
frames. Compared with the A-LOAM and ICP methods, we
also integrated wheel odometry as extra information. It is
integrated into the system in a tightly coupled manner to
eliminate motion distortion, assist object tracking and par-
ticipate in state estimation. Therefore, the proposed system
presented high accuracy on our test dataset.

V. CONCLUSION
We proposed an object-level SLAM method based on

3D LiDARs for the application of autonomous vehicles.
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Fig. 6. Trajectories of various methods on a Test Road 1, a short and
straight road.
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Fig. 7. Trajectory plot on Test Road 2. All methods returned to the starting
position.

−200 0 200 400 600
X[m]

0

200

400

600

Y
[m

]

GNSS/INS

Proposed

ICP Mapping

A-LOAM

LIO-SAM

80 90 100 110 120 130 140

−30

−20

−10

0

10

20

30

Zoom-factor:5

Fig. 8. Results of all methods on Test Road 3.
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Fig. 9. Results of all methods on Test Road 4.

This method can detect and track poles, walls, and roadside
parked vehicles that are common in urban environments.
We extract pose-related information from the measurements
of the objects, use a graph-based optimization method to
estimate the poses of the ego car and map objects, and extract
the scale-related information to update the size of the objects
in the map. A loop detection method based on the geogra-
phical distribution of surrounding poles was introduced. The
proposed method was tested on four datasets of different
trajectory lengths and compared with other methods. The
results showed that our method outperformed other methods
in terms of absolute and relative pose accuracy. Besides, the
proposed method can generate globally consistent maps with
semantic meaning. For future work, we can increase the types
of objects involved in the loop detection model to improve its
robustness. In addition, other types of objects can be detected
and added to the system to enrich the information of the
generated map.
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