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Abstract— Accurate and reliable localization is a prerequisite
for autonomous driving. Methods based on sparse landmarks,
such as pole-like structures, have been widely studied because of
their lower requirements for computing and storage. However,
the number of landmarks of a single type is not always sufficient
for reliable positioning. We propose a localization method using
three different types of features in urban environments. The
features we choose are poles, corners and walls which are
persistent over time and can be reliably detected with LiDAR
sensors. A pattern matching method for data association is
introduced. Instead of using a filtering method, we adopt the
graph-based optimization method to solve the pose estimation
problem. Experiments conducted on two test roads show
that the proposed method can provide accurate and reliable
localization results in urban environments.

I. INTRODUCTION

Autonomous vehicles require accurate and reliable loca-
lization especially driving in urban environments. Costly
GNSS/INS navigation systems are limited by occlusions of
the satellite signals, atmosphere changes, and multipath re-
flections. They cannot always guarantee accurate positioning
in urban environments. In order to achieve this, a variety of
alternative precise localization methods have been studied,
involving sensors such as LiDARs, video cameras, radars,
IMUs, or a combination thereof. In particular, multi-beam
LiDARs provide fast and accurate measurements of the
environment in form of three-dimensional point clouds. They
are commonly used for ultrareliable localization and mapping
in the field of autonomous driving.

In this paper, we present a localization algorithm based on
sparse landmark features obtained with a 3D LiDAR sensor.
LiDAR-based features vary in number, spatial distribution,
and semantic level, depending on how they are selected. For
example, a relatively large number of low-level geometric
features can be chosen according to the local curvature
or the gradients of surfaces. The detection of 3D objects,
such as planes and poles, produces a sparser distribution of
high-level features. Such 3D objects have the advantages of
being sensor independent. Moreover, these kinds of features
are convenient for manual checking of the detections and
the correctness of the data association. They have lower
storage and calculation requirements. Such features can be
provided as part of the HD map of a city from third-
party organizations or companies. Pole-like structures are
one of the most frequently used features for localization of
autonomous vehicles as they are stable across seasons and
can be detected easily with a LiDAR system.
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Several industrial companies and research institutes have
collaborated to conduct automated and connected driving
tests in Berlin. In a residential area for about one kilometer
long in the test field, only a few pole-like objects such
as streetlamps and trees can be found. They are not dense
enough for reliable data association. This situation is com-
mon in residential areas outside of main roads. Therefore, we
enrich the set of landmarks by adding fragments of walls and
corners. Compared to other objects such as curbs, which are
often occluded by parking cars, walls can be more reliably
detected. The combination of walls, borders of windows and
doors, can be detected as corners, which increases the total
number of features at our disposal.

Regarding vehicle localization, filtering algorithms such
as particle filters, or EKF, have been widely used for real
time results. Particle filtering has disadvantages such as low
efficiency and particle degeneracy. EKF relies on initial esti-
mates for its linearization expansion, it has a relatively larger
error when solving actual inherently nonlinear problems. We
adopt the optimization method for pose estimation. Recent
studies have explored factor graph-based methods for pose
estimation and compared it to filtering methods [1].

The main contributions of this work are the following: (a)
We provide a method for accurate and reliable localization
for automated driving in urban environments. (b) The featu-
res we choose are three types of landmarks, which largely
increase the number of features compared to solely pole-
based methods. They can localize a vehicle in a residential
area with few poles. (c) The results of our experiments
demonstrate good repeatability and high accuracy.

II. RELATED WORK

In recent years, researchers have tackled the vehicle loca-
lization problem using pole-like landmarks extracted either
from LiDAR sensors or cameras. Brenner et al. [2] discussed
vehicle localization based on poles extracted from LiDAR
data, and the automatic creation of maps of landmarks. In
[3], a stereo camera system was used to detect pole-like land-
marks for localization in urban scenarios. A particle filter was
adopted to fuse wheel odometry and tracked poles to estimate
the vehicle’s pose. In [4], a pole-based localization method
with local pattern matching was introduced to improve the
correctness of the data association.

However, additional features such as planes, lane mar-
kings, and curbs can also be used for landmark-based lo-
calization in urban environments. The authors in [5] utilized
camera-detected lane markings to assist in the localization
process, and the position accuracy was improved. Study [6]



took advantages of reflection density information from laser
scanners to detect various markings on the road surface,
in conjunction with curb maps for vehicle positioning. In
[7], the authors also used lane markings and curbs for
localization, but the features were detected with a stereo
camera. This study demonstrated accurate positioning result
on rural roads.

Landmark-based localization and SLAM algorithms usual-
ly use the nearest neighbor method for data association, and
it can be problematic when the initial position is inaccurate.
Mismatches can also happen when the feature detection is
noisy. One solution to this issue is to use the relations
between local features for pattern matching. Previous re-
search [8], [9] used the point pattern for data matching.
Study [4] introduced a matching method using point and line
features. Drawing from the related work, for this research,
we use three different types of features, and therefore a new
matching method is required.

Although different types of features have been studied.
For data fusion and pose estimation, particle filters and EKF
are most commonly used. The possibilities of using graph-
based optimization for localization were explored in [10]
and showed its increased robustness against outliers. In [1],
factor graph-based localization using third-party maps for
automated driving was recently studied, and it presented
higher accuracy compared to particle filter methods.

III. SYSTEM OVERVIEW

In this section, we introduce the main parts of our pro-
posed localization method in urban environments, including
feature detection methods, a priori map creation, data asso-
ciation and pose estimation methods.

A. Feature Detection

The feature detection algorithm starts from generating
range image from LiDAR measurements. The measurement
points from the LiDAR sensor arrive in separate packages.
We first need to eliminate the motion distortion while the
car is moving. The wheel odometer provides movement
information with a frequency of 100 Hz. It can be used
to align LiDAR measured points. When a 360-degree scan
is completed, the measurements are combined as a range
image. Fig. 1 shows part of the range image after the motion
distortion correction. The feature detection process can be
outlined in two steps. First, the image is scanned line by line
to find potential feature segments of pole, wall and corner.
Feature segments of each type are stored in a segment buffer
for follow-up processing. The second step is to merge the
buffered segments into features.

Fig. 1.
has 64 pixels in vertical.

A segment of LiDAR Image after motion distortion correction. It

Fig. 2.

(a) A potential pole segment, (b) a wall and corner segment.

In order to find a pole segment, we search for a set of
measurement points is distinguished from the background
detections. To find the potential wall segments, we intuitively
search for points with similar distance. A sliding search
window is adopted to tolerate outliers. In the wall segment
finding process, we search for potential points of corners
with large curvature. Therefore, only those corners located
on the potential wall can be detected. Fig. 2 shows examples
of pole, corner and wall segments.

Once the horizontal scan is complete, the segments are put
into a histogram buffer according to their horizontal detection
angle. Take pole segments as an example: if several segments
have a close detection angle, we try to vertically merge them
together. The center and the covariance of these points can be
calculated. We then compute the eigenvalue decomposition
of its covariance matrix. The corresponding eigenvector of
the largest eigenvalue represents the pointing direction of the
pole. For walls we project the points of the wall segments to
the ground plan and then calculate the corresponding eigen-
values and the eigenvectors. The eigenvector corresponding
to the largest eigenvalue represents the direction of the wall,
and the second largest eigenvalue represents the expansion of
these points in another direction. If the second value is small,
it means that the points are mainly expanding in one direction
on the projection plane, and the wall is perpendicular to the
ground. Corners are relatively simple to calculate. If a set
of corner segment points have close positions on the ground

Fig. 3.
segments of walls and magenta columns are corners.

Detected features, green cylinders are poles, yellow planes are
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Fig. 4. Feature map of Thielallee, there are plenty of pole-like features on
this street.
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Fig. 5. “SAFARI” test field for automated and connected driving in Berlin,
the main road is about 5.6 km. The zoomed in view shows the area where
only a few poles exist but plenty of corners and walls can be detected.

plane, they basically form a corner. Fig. 3 shows the detected
features: green cylinders are pole-like features, yellow planes
are wall segments, and magenta columns are corners.

B. Feature Map

The localization algorithm needs a high precision a priori
map for feature matching. The quality of this map directly
affects the accuracy of the localization. Our test vehicle is
equipped with an Applanix DGPS/INS navigation system,
which can provide global position for localization and map-
ping. However, it can not always provide accurate data to
create consistent maps. We adopted a SLAM method to
produce our feature-based a priori map. The off-line batch
solution globally minimizes motion and observation errors
and creates a self-consistent map. We implemented a graph
SLAM with loop closure aided by the Applanix navigation
system as it provides highly accurate angular and linear
velocity. Previous research [11] presented a GNSS/INS aid
SLAM method to map trees, which gives inspiration for our
work. We adopted the graph-based optimization framework
g20 [12] in this study. For feature extraction we applied the

method introduced above. Fig. 4 and Fig. 5 show the created
feature map of two test tracks from previously recorded data.
Our experiments are conducted on these two tracks and the
results will be explained in detail in the next section.

C. Data Association

Extensive research has been conducted to explore the
problem of matching two sets of 2D objects under arbitrary
translations, rotations, and scale changes. It is widely used in
fingerprint recognition [13], object recognition [14], image
matching, scene recognition, and other areas. We use a
pattern matching method to find the association between
a set of detected features and the features in the a priori
map. Different from a common affine invariant matching in
computer vision area, the features detected by LiDAR have
no scale changes, and the point features are of two different
types (pole and corner). For our application scenario, we
propose a new method for map matching.

Before each feature registration, we first update a local
grid feature map. The map data within the sensor’s detection
range are encoded as a grid map as shown in Fig. 6. Through
indexes, we can find out whether there is a certain type of
feature that exists in a grid cell with a time complexity of
o(1).

For each feature detection, detected features are denoted as
three sets:sp, s¢, s, to represent the poles, corners and walls.
Sets S,, S, S, contain three types of map features in the local
area within the sensor range. Further we define the tuple sets
tp ={(pi,pj:di.;))|pi,pj € spi# j}ite ={(pipj,dij)|pi,Pj €
Se,l 75 ]} and Ipe = {(pi,pj,diﬁjﬂpi € Sp,Pj € SC} where dw'
is the distance between p; and p;. Similarly, we define
tuple sets 7),,7;,T,. for the local map data. Algorithm 1
computes the matched points of detected features and the
map elements. The transformation between these two sets of
features are also calculated.

D. Graph Optimization for Pose Estimation

Next, we introduce how to use a graph-based opti-
mization to estimate vehicle poses with 3-DOF. Fig. 7
illustrates the problem in form of a graph. Very simi-
lar to the SLAM problem, we denote the state as x =
[X1,%2, ..., XK, m1,ma, ....,my] T, where K is the size of poses
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Fig. 6. Left: part of the feature map, it is encoded to local grid map (right)
for fast retrieve.



Algorithm 1. ClusterMatch

Input: sp,5:,8,5p,5¢,8w, Grid Map,K

Output: Matched Pairs, Transformation

1: Generate tp,tc,tpe, Tp, Te, Tpe

2: for k=0— K do

3:  Randomly select a tuple (p;, pj,d; ;) from tp,t. or tp.

4:  Find a tuple (pm,pn,dm,n) from T, T, or Ty, where dy,, is the
closest value to d; ;

5:  Calculate Transformation Rt for point pairs (pi, pm),(pj,Pn) or
(DisPn), (Pj, Pm)

6:  Set succeed < false

7:  for each left element ¢ in s,,s.,5, do

8 Apply Rt to e, get €

9 if ¢ matches to E in the Grid Map do

10: Add pair (¢',E) to Matched Pairs

11: if size of Matched Pairs > match_threshold do

12:

13

14

succeed < true

end for

if succeed do
15: Calculate Transformation from Matched Pairs
16: end for

included in each optimization, M is the total number of fea-
tures that can be observed within these poses. The maximum
a posteriori xp4p can be written as:

Xpap = argmaxyp(x|u,y). (D

Here u is the motion of the vehicle between two adjacent
poses, we use the data from the wheel odometer in this study,
and y is the measurement of all observed features within K
poses. Applying Bayes theorem to (1), we get:

pOx) p(x[u)

Xymap = argmax,p(x|u,y) = argmax
R TpOlu) 2

= argmax,p(y|x) p(x|u).
The motion function and measurement function are:
xk = f(—1,up,wi) (k= 1,...,K) (3)
ykj = h(xg,mj,vi)(k=1,....K;j=1,....M). 4)

Assume the motion noises wy and vi; to be independent
and additive. Ry and Qy; are the covariances of wy and vy;
respectively. Now the motion and measurement error can be
written as follows:

epr =Xk — f(Xp—1,uy) )
enkj = Yrj — h(xx,mj). (6)

Take the negative logarithm to p(y|x)p(x|u) in (2)

Inp (x| xk—1, u).-

(7N
After substitution of (5), (6) to (7), removing the constant
terms and normalizing it, we can get:

Jx) =Y ef iR era+ Y. Y ehiiQiensye (8
k ko

Inp(yi|xe) —
k=1 k=1

K K
—In(p(ylx)p(x|u)) = — ]

Then we consider the constraints from the a priori map.
As shown in Fig. 7, p; represents a priori information from
the prebuilt feature map. Assume the covariance of the a
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Fig. 7. Optimization problem represented as a graph. x; are poses of
vehicles, m; are features, u; are odometer inputs, yy; are the measurement
of features, and p; are a priori information of features.

priori map is known as S;. We can now simply calculate the
map error as
€m,j =MmMj—PpPj. (9)

For point features, ey, ; is the position difference of two
points, and for wall features e,, j = (Ad;,A6;). By adding
the map error to (8), we can get the final objective function:

J(x) = Ze?kRk_lef«k +Zzef7l:kak_jleh,kj Jrzei]?;,jS;lemJ'
k k j k

(10)
Our goal is to minimize J(x). We use the g2o [12] library
to build graphs like Fig. 7 and use the Levenberg-Marquardt
algorithm to iteratively solve the problem. The number of
poses taken into optimization is limited by the size of the
sliding window. In SLAM problems, to ensure computation
efficiency, a marginalization technique is usually used to
limit the number of states involved in the computation. Here
we directly discard the previous states. The reason is that
our a priori map built from the offline SLAM approach is
self-consistent, we give high confidence in it. As a result,
it provides strong constraints on the current states. If a
large size for the sliding window is selected, the previous
constraints have little effect on the current states. And this
can also avoid the accumulation of linearization errors caused
by marginalization.

IV. RESULTS

We ran our method on an autonomous test vehicle and
collected datasets. The vehicle is equipped with a Velodyne
HDL-64E LiDAR scanner, an Applanix POS-LV 510 na-
vigation system, and other sensors such as cameras, radar
and other laser scanners. The algorithm was run on a laptop
with an Intel Core i7-7700HQ CPU. A GPS position was
required at the beginning to initialize the algorithm. The
method provides 2D position and heading information at a
frequency of 100Hz.

We use two test roads. Test Road 1 is “Thielallee”, a street
near our research institute. The length of one lap on this road
is about 1.2 km. There are plenty of trees along the road. Test
Road 2 is a test area for connected and automated driving in
Berlin. It contains around 5.6 km main roads with complex
traffic conditions. Fig. 4 and Fig. 5 show the feature map of



TABLE I
CORRECT MATCHING RATE AND AVERAGE CALCULATION TIME OF THE
PROPOSED PATTERN MATCHING METHOD.

Road Correct Matching | Average Matching Time
Test Road 1 99.52 % 0.27 ms
Test Road 2 98.65 % 0.45 ms

these two test roads. The feature maps are built based on the
previously collected data using the off-line SLAM method
introduced in the previous section. We conducted real-world
tests on Road 1 and tests on the dataset of Road 2.

Three experiments were conducted. First, we tested our
map matching method. We obtain feature detection results
from LiDAR scanner every 0.1 second on average. The
feature matching results on the Test Road 2 is shown in
Fig. 8. The average number of successfully matched poles in
this area was 13.9 at each time, and this number increased to
21.4 if all three types of features were used. We can find that
on the left side of the test road, the number of successfully
associated poles is under 5 for most parts of this region. It
is significantly improved if corners and walls are added.

Table I shows the matching success rate on two test roads.
A successful matching means at least half (6 at minimum)
of the detected features are associated with feature map, and
these associations lead to correct transformation result. The
correct matching rate are 99.52% and 98.65% on the two test
roads, respectively. Failed match is usually due to the number
of detected features is insufficient to match with the feature
map reliably. In the case of a failed match, the corresponding
pose has only a constraint from wheel odometer. In terms of
running time, the ClusterMatch algorithm has a very high
efficiency and is sufficient to support real-time localization.

Compared with the commonly used Nearest Neighbor
matching method, the ClusterMatch has several advantages.
First, it is not sensitive to the accuracy of the initial position.
In fact, it can perform global matching without knowing the
initial position. But in practical, the detected features are
only matched with a local sub-map in order to achieve a
high computation efficiency. The size of the sub-map is the
effective feature detection range with an extension, which
is 60 meters around current position in total. Therefore,
the initialization of the proposed method requires only a
rough position, and an ordinary GPS is enough. Secondly, the
Nearest Neighbor method requires high accurate and reliable
a priori information of current pose before conducting the
map matching. Otherwise, the correct data association may
not be obtained. ClusterMatch performs feature matching
within the scope of local sub-maps, and data association does
not depend on the accuracy of pose prediction.

In the second experiment, we compared the feature loca-
lization results with the trajectory reported by the navigation
system. With the RTK (Real-Time Kinematic) technique, it
can provide a comparably precise positioning information.
However, analysis of the results in the test roads showed
that only when the vehicle is stationary, the error may fall
below 10 cm. A larger error occurred during movement, and

Fig. 8.  Left: number of matched poles; Right: number of matched all
features. Color coding as indicated.

sometimes it showed an unpredictable drift that can exceed
1 meter. This is a situation that our solution needs to avoid.
Therefore, we conducted a repeatability test to evaluate the
lateral accuracy. The test method was to let the human
driver repeatedly drive on the short test road and try to keep
the vehicle in the center of the lane. The repeatability can
be estimated from the recorded positioning trajectories. As
shown in Fig. 9, the localization method proposed shows
better consistency. After removing the U-turn area where it
is difficult to maintain a consistent driving trajectory, the
average lateral error is around 15 cm. Considering the error
introduced by the human driver, this result is acceptable. The
error of positioning results reported by the Applanix system
are significantly larger.

On the third experiment we evaluated the accuracy of our
localization algorithm. As shown in the above experiment,
the navigation system has an unpredictable drift error, so we
did not use it as the ground truth. We ran the offline SLAM
algorithm introduced earlier on the recorded test dataset
to get optimized poses with timestamps as ground truth.
Then we could compare our localization performance against
it. Fig. 10 shows the distance error over time. Compared
with the navigation system, the proposed feature localization
method has a smaller distance error most of the time. And
its results show a smaller variance.

Table II outlines the experiment results of the average
distance error, RMSE and maximum distance error of the
two methods. On Test Road 1, the average distance error
and RMSE of the proposed method is 10.2 cm and 11.8 cm,
respectively. The maximum distance error is 32.0 cm. On
Test Road 2, the error became larger. It increased to 15.2 cm
and 17.1 cm. The maximum distance error is 37.2 cm on this
road. The Applanix system shows a relatively larger error
on both test roads, especially on Test Road 2. The reason
could be that Test Road 2 is in a residential area with plenty
of buildings along the road, which may affect GPS signals.
It can be seen that the proposed method presents accurate
localization results, showing advantages over the positions
reported by the Applanix system.

V. CONCLUSION

We introduced a LiDAR based localization method for
autonomous vehicles in the urban environment. The features



200

100

Zoom-factor:6 \

—60 —55 —50 —45 —40

E‘ —— Applanix
= —— Feature Localization
—100 -
=380 %om—facwrce
30 35 40 4 B
175 180 185 190 195 200
=260
—200
—265
—270
—275
—300 —980
Zoom-tactor:6 —285
100 200
X[m]

Fig. 9. Trajectory plot of feature localization results and Applanix reported
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TABLE I
COMPARISON OF THE PROPOSED METHOD AND A NAVIGATION SYSTEM.

Method - Test Road 1 Test Road 2
verage Max. Average Max
Distance | RMSE ‘| Distance | RMSE :
Error Error
Error Error
Applanix 0.162 0.211 0.881 | 0.699 0.749 1.374
Proposed | 0.102 0.118 0.320 | 0.152 0.171 0.372

we used were pole-like structures, corners and walls. We
also outlined the pattern-matching-based data association
method and the optimization method for pose estimation.
Experiments were conducted in practice and on datasets.
The proposed method showed its capability of accurate
localization in residential area where only a few poles exist.
In both practical and dataset tests, the proposed method
presented better repeatability and accuracy compared to a

high-cost navigation system.
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