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Abstract— In this paper, a method based on vector fields
for the navigation of autonomous cars is developed. Vector
fields—used to generate the desired heading angle of a vehicle
toward a specified road lane—attract the car to the desired
path and prevent the car from colliding with obstacles. Also,
a control law is developed to define the velocity direction and
the desired steering angle based on the angle between the car
and the vector field. The efficacy of the proposed approach is
investigated through several simulations and lab experimental
tests.

I. INTRODUCTION

The problem addressed in this paper is that of navigation
of autonomous cars using vector fields in structured road
maps. The ego car should follow the desired road lane while
avoiding obstacles on the road. The proposed approach com-
bines map data and path planning algorithms, and provides
vector fields which navigate the ego car toward the road. The
vector fields are calculated offline to obtain the force vector
of each point in an efficient way. On-line path planning and
trajectory generation are computationally heavy tasks. By
making offline calculations, especially when the autonomous
cars drive inside cities with restricted area, the calculation
capacity of the car’s computer might be saved.

A vector field is like a magnetic field around the desired
road lane, so that the desired road lane attracts the ego car. A
well known weakness of vector fields is that for each problem
a specific vector field should be defined ”ad hoc”. A new 2D
vector field definition based on the car velocity is proposed
in this paper. In the vector field approach, it is important
to run the controller in a high frequency. However, online
calculation of vector fields for large areas makes it difficult
to run the controller in a high rate. To cope with this problem,
we calculate the force field for the discretized area, and save
it in an efficient way, so that the online algorithm can be run
in a very high frequency (200Hz). Repulsive forces around
the obstacles are also defined based on the road lanes, which
push the ego car to the adjacent lane. A discrete vector field
navigation system could cause the chattering; this problem is
solved in this paper by interpolations in on space and speed.

In this paper we present a novel approach for autonomous
vehicle navigation in environments with a structured map,
by creating offline force fields, which specify the desired
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heading angle of the vehicle to fulfill path following and lane
keeping tasks. The force fields are augmented and modified
locally by presence of obstacles, as result of the obstacles
force field. In creating force fields we take into account the
velocity of the vehicle along with the vehicle distance from
the path, to find feasible force vectors.

The rest of the paper is organized as follows: The next
subsection briefly reviews the related work, and highlights
the contribution of the present paper. Section II describes the
vector fields. In Section II-E the obstacle repulsive vectors
are designed. Then, in Section III numerical simulation and
experimental results are provided to show the effectiveness
and efficiency of the proposed approach. Finally, conclusions
and plans for future works are outlined in Section IV.

A. Related Work

The core idea of using vector fields for the navigation of
autonomous vehicles is to define an artificial vector field
which attracts the vehicle toward a desired point (goal),
and prevents collision with obstacles [1]. The concept of
using vector and potential fields for finding optimal paths in
environments with static and dynamic obstacles for mobile
robots is yet a developing research topic, and researchers
suggest new techniques for path planning and collision
avoidance. Vector fields for the robotic navigation are used in
several applications ranging from mobile robots [2] to aerial
vehicles [3], space crafts [4], and recently for autonomous
cars [5], [6]. An informative comparison between different
novel and well-established potential field based path planning
approaches is presented in [7]. The application of the vector
field techniques to path path planning and navigation of au-
tonomous cars has recently gained a great attention. An inte-
grated motion planning and control approach for autonomous
car navigation based on potential fields is presented in [8],
which aimed at reducing the control effort while maintaining
a desired tracking error tolerance, and a smooth steering. A
framework for path planning and tracking is suggested in [9],
which concerns collision-free paths.

We aim at navigation of an autonomous vehicle in a
structured road map. The desired path is initially planned
by a path planning sub-system in accordance to the mission
of the autonomous car. We utilize a force field to execute
the path following task. The contribution of this paper with
respect to the state of art is summarized as follows.
• Instead of considering a single point as goal, we con-

sider a lane of goal points which specifies the path,
and in calculation of the goal points the vehicle lateral
distance from the path, and the ego car speed are
considered.
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• In order to reach high speed, high rate, and computation-
ally light navigation, we generate a force field offline,
which is updated online in case of detecting obstacles
in the vicinity of the car.

• In order to optimize the memory usage, and achieve
a smooth motion, the vector fields are interpolated not
only in the space domain, but also in the speed domain.

II. NAVIGATION USING VECTOR FIELDS

In order to perform the path following task using force
field approach, let G be the desired path to be followed,
e.g., a lane of the road. This path is considered as a
collection of goal points. We discretize the area around the
path with an appropriate resolution. The idea is to define a
force field F , such that—for each position (x,y)—the goal
attracts the autonomous car, and detected obstacles must
generate artificial repulsive forces to prevent collision. Thus,
the attractive force vector FG(x,y) ∈ R2 and repulsive force
vectors FOi(x,y) ∈ R2 constitute in each position (x,y) the
force vector F(x,y) as:

F(x,y) = FG(x,y)+∑FOi(x,y) (1)

In the sequel, we show how to calculate FG and FOi .
In calculating FG we consider a constant magnitude for it,

in each point, and we calculate its orientation which specifies
the appropriate vehicle heading angle in order to reach and
follow the path. The direction of FG(x,y) is defined by a
vector from the current position of the car to a goal point
(Pg) on the path. In the following sub-sections, the goal points
are defined first, and then the process of generating attractive
force field is described.

A. Goal Points definition

The main goal of the proposed approach is to follow a
desired path, that without loss of generality we may consider
a road lane as desired path. If the objective was only to reach
the road lane, for each (x,y)−point, the choice of the nearest
point (Pn) on the path as a goal point would be the best choice
(Pg = Pn). However, to follow the lane, the goal point must
be further ahead of the nearest point which pulls the car
along the path. Also, when the autonomous vehicle reaches
the path, the look-ahead point should be chosen based on
the car’s speed, in order to obtain smooth changes in desired
heading angle of the car, and to prevent oscillation of its
heading angle due to unfeasible commands.

Pg = Pn +dl (2)

where dl is a vector from the end point of Pn to a point l
meters ahead along the path, and l is defined based on the
velocity and the car distance to the path.

l = α min(|v|, |v|
||Pn||

) (3)

in which v ∈ R is the ego car’s speed, ||Pn|| is the distance
between the ego car’s position and its nearest point on the
road path, and α ∈R is a tuning parameter. When the ego car
is far from the path, l is approximately zero, while once the

(a) Tempelhof test area is discretized in position. Vector Pg shows the
attractive force vector direction at a particular point outside the path.

(b) A vector field obtained for a constant velocity of 2 m/s.

Fig. 1: A typical map and path, and the corresponding vector
field for a constant velocity.

ego car is on the road, l reaches its maximum value. Fig. 1a
depicts Pg, Pn, and dl for a car outside the path. The vector
field is saved in a two-dimensional matrix F of size of l×w
where l = bL

r c and w = bW
r c in which r is the resolution of

the vector field, and L and W are the length and the width of
the surrounding area of the path. Each element of the matrix
is a 2D force vector containing Fx in x-direction and Fy in
y-direction.

As is evident from (3) the vector field depends on the car
speed, i.e., the car’s ability to steer depends on its velocity:
in the lower velocities the autonomous car can effectively
and safely rotate more than in higher velocities. Therefore,
we calculate the vector fields for minimum and maximum
speeds offline, and save them as Fmin and Fmax, respectively.
Then, for a specific velocity the appropriate force vectors
will be interpolated online.

B. Interpolation

We calculated a force field for a discretized set of positions
and in minimum and maximum velocities. In order to use it
in any position in the field and in any velocity in range, we
use interpolation twice:
• Interpolation in space domain, that calculates the force

vector for any position based on the surrounding force
vectors within a specified vicinity of the position.

• Interpolation in speed domain, that calculates the ap-
propriate force vector for a specific velocity based on
the force vectors for minimum and maximum velocities
at the same position.

The space interpolation is firstly performed, and followed by
the speed interpolation.
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Interpolation in space is based on that the force vector in
a specific position P is the weighted average of the force
vectors belong to the elements of F which P located in
between them. Table I depicts the interpolation in space
algorithm. In the interpolation presented in Table I first the

TABLE I: The interpolation algorithm

Interpolation
For grid points around the car position:

di[m]=distance to the car position
wi =

1
d[i]+ε

normalization step wi =
wi

∑wi
fp = ∑wiF [i]

grid points near the current car position (P) are selected,
and their indices (i) are kept. Then, the distance of each grid
point from the current car position (di) is calculated. The
weight of each grid point is defined as the inverse of its
distance to the car’s position, and a small value (ε) is added
to the denominator to avoid big values in case of very short
distance. Next, a weight normalization step is performed to
keep the result value in the range of the input elements;
after the weight normalization step, the interpolated force
vector ( fp) is calculated as the weighted average of the input
force vectors. The next interpolation step is to be done in
the velocity domain; we need the force vector ( fv(P)) in
a specific velocity (v) in a specific position (P), which is
expressed as:

fv(P) = fmin(P)+
fmax(P)− fmin(P)

vmax− vmin
(v− vmin) (4)

where fmin(P) and fmax(P) are the force vectors of the
minimum and maximum speeds (vmin and vmax), which are
calculated in the previous interpolation step offline.

C. Motion direction and steering angle

The motion direction and the steering angle, in each
instance, are obtained by projecting the force vector on the
car frame. If the longitudinal element of force ( fx), w.r.t. the
body frame of the vehicle, is negative then the car drives
backward, and if fx is positive, the car moves forward. The
steering angle (ψ) is expressed as:

ψ =

{
β atan2( fy, fx) if fx ≥ 0
−sign( fy)max(|ψ|) if fx < 0

where β ∈ R+ is a positive tuning parameter. Fig. 2 shows
the force vector ( fP) in four different position of the car w.r.t.
to the path. In each instance fP is projected to the body frame
of the car, if fx > 0 the car moves forward, while if fx < 0
means a backward motion of the car. The circles in Fig. 2
represent the steering corresponding to fP and the motion of
the car as result of that steering.

Fig. 2: Direction of motion and steering for different orien-
tation of the car in different positions w.r.t. the path.

D. Lane changing

An autonomous car driving on a road quite often needs to
change the driving lane, in order to overtake other cars, to
change the speed, or to find a better path with less traffic.
The motion planning subsystem of the autonomous car is
in charge of selecting the lane. The force field for each
lane is separately calculated, and according to the command
from the motion planning subsystem, when lane changing
action is needed, the system only need to load the vector
field of the new lane; then, the ego car will change the lane
automatically. Fig. 3 shows a schematic representation of
the force field for a road of three lanes, and two consecutive
lane changing in order to perform an overtaking action. Once
Lane 1 is the desired lane, its corresponding force vector
navigates the car along the the desired path, and by changing
the desired lane to the second lane, the lane changing action
takes place automatically by loading the force field of Lane 2
and using it as the navigation source.

Fig. 3: For each lane the vector field is separately generated
and saved, and when a lane changing command received,
the appropriate force field is loaded, and lane changing takes
place automatically by switching between two vector fields.
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E. Obstacle repulsive force field

Collision avoidance is an essential demand for any path
following approach in the navigation of autonomous cars.
Keeping the current framework of using force fields to
navigate the car along the desired path, we define a separate
force field for each detected obstacle, in a predefined vicinity
of the car, on the path. To avoid collision while overtaking the
obstacles, for each obstacle a repulsive force field is defined,
and the force element of each obstacle field in each point is
added to the offline calculated attractive force field (FG). The
repulsive force vector of an obstacle is inversely proportional
to the distance between the obstacle and the ego car. The
force vector around an obstacle in each (x,y)-point is defined
as:

FOi =

 kdo
(||do||2+ε)

if (dySθ+dxCθ)2

a2 +
(dxSθ−dyCθ)2

b2 < 1

0 if (dySθ+dxCθ)2

a2 +
(dxSθ−dyCθ)2

b2 ≥ 1
(5)

where do is a vector connecting the center of the obstacle to
the center of the ego car, and k ∈ R is the tuning parameter
to adjust the intensity of the repulsive force. We chose k =
|| fP|| to keep the intensity of the repulsive force in range
of attractive force. As previously stated, the magnitude of
the car velocity is constant, and the direction of velocity is
controlled by the force field; therefore, the intensity of Fo
is defined proportional to FP. The area of influence for each
obstacle locate at PO = [xo,yo]

> is defined as an ellipse–that
is rotated along the path with angle θ–that can be tuned
by parameters a,b ∈ R depending on the velocity of the car
and other general navigation policies. The obstacle influence
threshold in the longitudinal direction of the path is longer
than in lateral direction (a > b).

III. SIMULATION AND EXPERIMENTS

In order to evaluate the feasibility and to assess the
efficiency of the proposed method, we performed simulations
and experiments on a model car designed and fabricated
at Freie University Berlin for research and educational pur-
poses.

A. Experimental Setup

The model car is a four-wheel drive vehicle, which its size
is one tenth of its actual counterpart, it is driven by a BLDC
motor equipped with encoder, and its steering is controlled
by a DC servo-motor. The perception system of the model
car consists of different sensors: an IMU, a Lidar, an RGBD
camera, and a fish-eye camera (Fig .4a). Data acquisition,
navigation, and control are performed on-board using an
Odroid XU4 computer. The model car can communicate
with external systems, e.g., PC, smart phone, or other model
cars, via WiFi connection for monitoring, data collection, and
supervisory control purposes. The whole system is powered
by an Li-Po battery. The software is implemented using C++
and Python in the ROS framework installed on the Linux core
of the onboard computer.

We tested the car in a test field shown in Fig .4b. In order
to facilitate localization we installed four colored lamps on

(a) The experimental test-bed (model car), a four-wheel drive vehicle
of one tenth of a real car, driven by a BLDC motor and steered by
a DC servo-motor, equipped with IMU, Lidar, RGBD camera, and
fish-eye camera, and an Odroid XU4 computer.

(b) The test field: a road circle with two lanes, that has connections
and intersections between different its different sections, which be
can inscribed in a rectangle of 6 m length and 4 m width.

Fig. 4: Model car in the test field.

the ceiling over the test field. The upward looking fish-eye
camera observes the lamps in each moment and using a real
time range-based localization [10], localizes the vehicle on
the test field. The Lidar can be used to detect and avoid static
and dynamic obstacles. The RGBD camera can not only be
used in conjunction with the Lidar to obstacle avoidance, but
also to lane keeping.

The whole system, including the model car with all its
subsystems and the test field, is simulated using the ROS
framework and visualized by Rviz. The model car can be
operated in either simulation or in real mode. The proposed
approach for navigation is implemented using python [11],
and validated in simulations and experiments, that are re-
ported in the rest of this section.

B. Simulation

The proposed method is tested on a test field that is a road
circle with two lanes and has connections and intersections
between its different sections. The circumference of the road
map can be inscribed in a 6×4 m2 rectangle (Fig 4b). The
same map is also used for simulation study. Each one of the
two lanes might be the desired path.

We discretized the area to a 10 cm2 grid. For each corner
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Fig. 5: Generated force field for the second lane of the road
map used in simulations and experiments.

of the grids, the nearest point on the road lane is calculated
based on KD-tree algorithm [12]; then, the vector field for
each one of the lanes is calculated and saved separately. A
visualization of the vector field for Lane 2 of the road circle
(the inner lane) is shown in Fig. 5 in which the center of
each grid cell is shown with a red dot and the outpointing
arrow shows the appropriate heading of the car to follow the
lane, which is shown by colored dots.

We evaluated the proposed approach in three test cases
in order to assess the functionality of the method in dif-
ferent circumstances separately. The test scenarios are the
followings: a) lane keeping with initial opposite heading with
respect to the lane, b) lane changing, and c) overtaking and
obstacle avoidance. In all cases the constant speed of the car
is 0.6 m/s. In the following each of these simulations and
their results are described.

Fig. 6: Simulation result of lane keeping with initial opposite
heading with respect to the lane

Lane keeping with initial opposite heading with respect
to the lane: In this test, the vehicle is initially located
on the lane, but with opposite heading with respect to the
direction of the lane. As is shown in Fig. 6, the vehicle
initially moves backward in the direction of the guiding

force vectors till its heading becomes perpendicular to the
path, then it takes the forward direction and the guiding
force vectors attract it to the desired path. The average and
maximum errors in this test were 0.04 m and 0.42 m distance
from the desired path, respectively. The comparably big error
from the moment the vehicle heading is perpendicular to the
path till its heading becomes along the path, i.e., between
t = 0.8 to t = 3.8 s is due to the nonholonomic kinematic
of the the vehicle and its constant velocity. In future work
we consider changing the speed automatically to improve the
path following performance in such cases.

Fig. 7: Simulation result of lane changing during path
following task.

Lane changing: In the real world, while driving a car,
changing the driving lane is inevitable. Human drivers,
considering the situation and objectives, e.g., destination,
time, traffic, decide to change the driving lane. As previously
stated, the vector field for both driving lanes are separately
generated and saved off-line. A mission planning system,
that could be an AI system based on cognitive interpretation
of the circumstances and objectives, could command our
navigation system to change the driving lane. However, an
automatic mission planning system is beyond the scope of
this paper; therefore, to test the lane changing task, a human
operator commands the vehicle to change the lane. The
vehicle is initially located outside the road heading toward
the direction of the lane, and the initial desired path is the
outer lane; after reaching the lane, the human operator sends
the lane changing command (using keyboard) four times, and
as it can be observed from Fig. 7 the lane keeping and lane
changing in constant speed is performed sufficiently accurate.

Overtaking and obstacle avoidance: Overtaking is an-
other common action while driving a vehicle. We evaluated
the overtaking task, which in effect is strongly related to ob-
stacle avoidance. In this test, there exist two static obstacles,
e.g., parked vehicles, on the same lane on which the test
car drives on. As is shown in the Fig. 8 our autonomous
vehicle performs the overtaking maneuver and comes back
to the desired path keeping its constant speed, by considering
the obstacles’ repulsive force vectors along with the guiding
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Fig. 8: Simulation result of overtaking and obstacle avoid-
ance (lane keeping in presence of static obstacles).

vector field of the desired path. As it can be seen in Fig. 8,
the overtaking actions were performed sufficiently smooth,
and the path following on the rest of the path was accurate.

C. Experiment

Fig. 9: Experimental result of lane changing during path
following task.

In order to experimentally evaluate the proposed approach,
we tested the proposed approach on the model car shown in
Fig. 4a over the test field shown in Fig. 4b. We tested the
lane changing task in which the lane changing commend,
similarly to the simulations, is given by a human operator.
The model car was initially located on the road heading
along the path, and the desired constant speed of the car
set to be 0.6 m/s. The human operator commanded the lane
changing 6 times during the path following task, which took
48 seconds. As the result of the experiment in Fig. 9 shows,
the lane changing actions took place smoothly and the lane
keeping was sufficiently accurate such that in the first turn
around the field, i.e., between t = 0 to t = 24 s that no lane

changing command is given, the average and maximum error
were 0.045 m and 0.15 m distance from the desired path.

IV. CONCLUSION

We propose a vector field approach for navigation and
path following of autonomous cars. The vector fields in
this paper are calculated and saved offline, which allows to
perform path following task in real time and with a very
low computational load. In calculating the vector fields we
take into account the distance from the path and the velocity
of the vehicle. The vector field calculation are performed
for a discretized area (area around the desired path), and
for minimum and maximum velocity of the car, then in
each moment and speed the appropriate force vector is
calculated by interpolation on space and speed. Furthermore,
we calculate online a repulsive force field in the vicinity of
each observed obstacle along the path. The repulsive force
from all obstacles is added to the attractive force field of the
path to obtain the final force vector that specifies the desired
heading of the car. This approach, as validated by simulations
and experiments, is compatible with normal driving tasks
such as lane keeping, lane changing, and overtaking.
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