
Flexible Unit A-star Trajectory Planning for Autonomous Vehicles on
Structured Road Maps

Zahra Boroujeni, Daniel Goehring, Fritz Ulbrich, Daniel Neumann, Raul Rojas1

Abstract— In this paper we propose a trajectory planning
approach for autonomous vehicles on structured road maps.
Thererfore we are using the well-known A∗ optimal path plan-
ning algorithm. We generate a safe optimal trajectory through
a three-dimensional graph, considering the two-dimensional
position and time. (1) The graph is generated dynamically
with fixed time differences and flexible distances between nodes,
based on the vehicle’s velocity, using a structured road map.
(2) Furthermore the position of dynamic obstacles is predicted
over time along the road lanes. The proposed Flexible Unit
A∗ (FU-A∗) algorithm was tested for real-time applications
with execution times of less than 50 ms on the car’s main
computer. The feasibility and reliability of FU-A∗ is validated by
implementing on simulated autonomous car of Freie university
”MadeInGermany” using the roadmap of Tempelhof, Berlin.

I. INTRODUCTION

Autonomous cars are the emerging future of the auto-
motive industry. In the way of the upcoming ubiquity of
automotive industry, two factors are of utmost importance:
the safety of the passengers and efficiency (i.e., pollution
prevention). Autonomous cars perfectly satisfy the second
condition. However, the current technology of commercial
batteries for electric vehicles imposes a limited drive time
per charge.

And, since the main role of this new technology is to
provide comfort to human drivers, a very recent trend in
academic and industrial research centers is to prepare the
grounds to avoid possible side effects of the driver-less
cars. Beyond this, there are strong hopes for the researchers
in this field that the new invention will make the current
situation of human driving much better in terms of safety
and organization, as it happened for the airplanes thirty years
ago. As computer programs do not sleep, do not get anxious,
do not break the known rules, and do not lose concentration,
they will probably cause fewer fatal and non-fatal accidents
while driving a car.

The research area of trajectory planning tries to provide so-
lutions for autonomous cars, most important in order to avoid
crashing and thus to guarantee the safety of the passengers
and to use as few energy as possible. To achieve the main
two objectives of autonomous cars, the trajectory planning
problem could be formalized to improve the convenience and
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comfort of driving by avoiding unnecessary braking, and to
reduce fuel consumption by finding the shortest path.

Fig. 1. Our test autonomous vehicle ”MadeInGermany”.

On the other side, nowadays the map of the cities become
more and more precise. Topological maps [1] like Route
Network Definition File (RNDF) structured map [2], [3]
contain roadmap nodes and arcs. Roadmap nodes represent
important features, such as entries and exits, and arcs indicate
drive lanes and street borders between neighbor nodes. The
drive lanes are defined as cubic splines. Although driving in
a structured map has restrictions (e.g. keep driving within
lanes, overtaking only on the left side, e.g., in countries
like Germany), finding the optimal trajectory while using
constraints will be faster since the search space is limited.

In this paper, we use the well-known A∗ path planning
algorithm while considering time as an extra dimension of
the nodes to find an optimal trajectory for an autonomous
car in a structured map. The grid unit of the search area
changes, depending on the speed of the nodes. Decreasing
or increasing the speed makes the grids shorter or longer,
in the other words makes grid units flexible. The structured
road map in which the autonomous car moves, is not obstacle
free. E.g. there exist other cars in the road, we consider
them as dynamic obstacles. We propose an approach to
predict the position of the obstacles on the structured map,
to evaluate which nodes are obstacle free (in the future)
during the the FU-A∗ search algorithm. The rest of the
paper is organized as follows: The next subsection briefly
reviews the related works. Section II describes the utilization
of the A∗ algorithm to solve the shortest path problem. In
Section III the practical issues are highlighted. Then, in
Section IV numerical simulation results are provided to show
the effectiveness and efficiency of the proposed approach.
Finally, concluding remarks are outlined in Section V.
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A. Related Work

To make sure that a trajectory is optimal w.r.t. safety, pas-
senger comfort, time and energy saving constraints and to be
able to calculate this trajectory under real-time conditions is
a challenging problem. The proposed approaches in this field
can be categorized mainly in two classes. On the one hand
trajectory planning is defined as an optimization problem
and numerical methods like Newton-Raphson algorithm [4],
MPC [5], and time elastic band [6] are utilized to solve
the problem. The main drawback of this class is that the
resulting trajectories are not stable, i.e., for different runs
under similar conditions one usually gets different trajectory
results. Another class of trajectory planners are represented
by search based algorithms which are largely deployed for
complicated static environments [7] [8] [9].

In this paper, we focus on the applicability of search based
planning algorithms for autonomous vehicles. The kinemat-
ics and dynamics of an autonomous car are similiar to
non-holonomic wheeled mobile robots, therefore the related
work regarding them will be reviewed here. In [9] a variant
A∗ combined with ReedShepp algorithm is used for free
environments (unstructured or semi-structured environment)
while just considering static obstacles. Re-planning using this
algorithm took on similar hardware 300 ms, while in our
algorithm - with dynamic obstacles are also considered - the
approach took less than 50 ms.
A well-known variant of A∗, the so called dynamic A∗ or D∗

[10] updates edge costs incrementally instead of recalculating
all over again when some of the edges changed. Further, D∗

computes the plan from goal to start. For large graphs this
variant saves a lot of computation time. In our case we do
not use this approach and instead create a small graph again
from scratch while the car is moving.

Randomized search algorithms, such as RRT, create a
path by using random samples from the search space [11].
For an unstructured environment they provide good results
which converge to an optimal solution with an increasingly
large number of samples. Since we are using a structured
environment it would be possible to shrink the search space
based on the map, and then to choose samples randomly from
there. However, this approach would not have any advantages
compared to our grid sampling scheme, since our approach is
fast enough. In [12] trajectory planning algorithm is shown
that aims to avoid obstacles while following the reference
trajectory formulated as a Markov Decision Process. How-
ever, the definition of a reference trajectory (local or global)
is not specified. And, if we consider the reference trajectory
as one of the street lanes, may cause a lot of unnecessary
lane changes in case of traffic. For example in order to
avoid obstacles, the car changes the lane and then comes
back to the previous lane, while the second lane change is
unnecessary.

Prediction of dynamic obstacle behaviour is a challenging
part of the trajectory planning which has been studied
utilizing machine learning techniques [13], and probabilistic
models [14] [15]. In [14] a dynamic obstacle is modeled

as a box, and for the prediction, it is assumed that the car
drives on the road while following the traffic rules. In [15]
an obstacle behaviour prediction is modeled as a quintic
polynomial based on the deviation of the obstacle’s heading
from the street center, under the assumption of small road
curvature. Differently from these methods, in our approach
the target lane of the obstacle is determined based on the
minimum distance of vehicle from the lane’s center, and then
the predicted trajectory is modeled as a cubic polynomial
along the road (could be a curvy road) under the assumption
of a slow time varying velocity which is the most probable
prediction.

II. TRAJECTORY PLANNING

While in common A∗ algorithm the environment map
is gridded in fix units, in our approach flexible grids are
defined in 3 dimensions: x, y, and time. It means the car
can plan to the next sequence points (on a 2D manifold)
with a flexible distance from previous points in fixed time
steps. Table I shows the steps of Flexible Unit A∗ (FU-A∗)
algorithm.

TABLE I
THE FLOW CHART OF FLEXIBLE UNITS A∗ ALGORITHM

FU A∗ algorithm
g: Cost of reaching node
h: Heuristic function
f: g+h
node(n): x,y,v,parent,f
Input: start(n), goal(n)
Output: path

1- if reachAroundGoal(start) = true then return makePath(start)
2- open ← closestPoint(start)
3- closed ← 0
4- while open 6= 0 do
5- sort(open)
6- n ← open.pop()
7- if reachAroundGoal(n)=true then return makePath(n)
8- neighbors ← expandFlexibleUnits(n)
9- for all the neighbors do
10- if neighbor /∈ Obstacles
11- neighbor.f ← (n.g+g)+(n.p+ p)+h
12- if neighbor ∩ closed = 0 then open←neighbor
13- else
14- closed←neighbor
15- closed←n
16- return 0

In the first step an open and a closed list are created, and
the closest point of the structured map is put to the current
position of the car as the first node. Then we determine the
neighbor points, in the same lane and adjacent lanes with
different speed in the next T seconds. We assume that a
car could do a lane change in T seconds. We could find
a good practical approximation of T for a specified speed
range of a car. Dynamic obstacle avoidance for each neighbor
points is checked, and free neighbor points are placed into
the open list. The rest is placed into the closed list. The cost
function for each point is calculated, and the open list is
sorted. We will continue the structure the car reaches around
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the goal. A goal point for each planning would be N meters
ahead of the car on the desired offline path which is given
by the structured map. In the sequel, each step of the FU-A∗

algorithm is clarified.

A. Neighbors

By considering time as a dimension, we define each grid
with specified speed and different acceleration actions. As
a result, not only the distance between the grids is not
fix, but also they have deterministic overlaps and do not
have a continuous pattern. In the structured environment,
the number of lanes, an their positions are well defined.
Therefore, we define at most nine actions which are possible
for each grid cell. As shown in Fig. 2, the actions are:
• following the same lane,
• go to the left lane (if existing),
• go to the right lane (if existing),

while
• decelerating,
• continuing with the same speed,
• accelerating.
The destination of the nine actions after the specified time

(T ) are called children nodes of a parent node.

Fig. 2. Graphical representation of the proposed search algorithm: each
parent node has nine neighbors, which are defined as decelerating, or
continuing with the same speed, or accelerating in the same lane or left/right
lane

Although the child node may reach the same positions
from different parent nodes, it usually will not have the same
time stamp (considering the time stamp that each node is
augmented with).

B. Obstacle Position Prediction

The 3D laser scanner and stereo camera provide us sensory
data that, by combining them, help us to reliably detect

obstacles1. The classified obstacle detection system provide
us the width and length of the obstacles, as well as their
current speed. Imparting the future behaviour of the obstacles
based on their type and direction is a very challenging
part of the urban driving. Many existing approaches assume
dynamic obstacles as a quasi-static or assume that they
linearly continue their path along their current heading and
with their present velocity. In this paper, we assume that the
car will remain in the same lane of the street which may
cause a change of the heading. For example if the street is
curvy the car would follow the street. Therefore, we have
more realistic predictions when structured maps are given.
Signals from the car ahead about a lane change could be
also considered, however since the replanning time (around
50 ms) is negligible compared to the lane change time (3 to
8 s), this complex prediction seems unnecessary. But, in the
intersection area all possible actions (going straight, turning
to left or right) are considered.

Each obstacle (the other cars around) is modeled as a band,
warped along the street lanes. This is to consider the position
uncertainty of an obstacle within a lane. Indeed, the band
presents the area which may be occupied by the obstacle.
To predict the position of the obstacles over time, the travel
distance at time step i is evolved from the current velocity
of the obstacle according to

d∆t = v∗∆t +w (1)

where d∆t ∈ R is the travel distance calculated in the time
step i, v ∈ R is the current linear longitudinal velocity of
the obstacle, and w ∈ N(0,σ2) is the process noise, which is
assumed to be drawn from a zero mean Gaussian distribution
with variance σ2.

Fig. 3. Travel distance at time sample i vs time sample i+1: The horizontal
axis represents travel distance of the obstacle center, and the vertical axis
represents the probability density function of travel distance.

Fig. 3 compares the prediction of the obstacles travel
distance at time sample i with time sample i + 1. The
horizontal axis represents travel distance of the obstacle
center, and the vertical axis represents the probability density

1Recently, commercial products like Mobileye c© and Ibeo c© made the
classification of the obstacles easier
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function of travel distance. The left Gaussian function shows
the predicted position distribution of an obstacle at a certain
time sample i. By increasing the uncertainty (variance) over
time, the distribution of the probability density function
becomes wider at the next time sample (the right Gaussian
function). One can define the band length bl as

bl = Nσ + lo (2)

where N determine the confidence interval, that is for exam-
ple 1 for 68%, and lo is the obstacle length.

By finding the closest point to the obstacle on the lane
splines (from the map) we can make an assumption in
which lane the obstacle is driving. The band position will be
calculated along the drive spline of the street for the given
predicted travel distance as shown in Fig. 4. In the case of
static obstacles the band length is the same as the obstacle
length over the time. However, for dynamic obstacles the
band becomes longer in each step as the probability density
function for the obstacle’s position become wider over time.

Fig. 4. Schematic representation of the proposed obstacle prediction:
orange box is a dynamic obstacle, the red bands show the predicted obstacle
position in next T and 2T seconds.

C. Obstacle Avoidance

For obstacle avoidance whole way from parent node to
the child node should be free of the predicted position of
the obstacles. Two different conditions, that together cover
all the possible conditions, are checked. The first one is if
child and parent nodes are at the same lane, and the second
one is if the child is at the adjacent lane of the parent node.
At the first one, we consider just the obstacles in the same
lane of child and parent nodes. The predicted obstacle band
should not be between the parent and the child nodes. In the
second condition, not only the obstacles in the child node
lane should be checked, but also the obstacles ahead in the
parent node lane should be checked. For the obstacles in
the child node lane, the predicted obstacle band should not
be between the child node and the image of parent node (on
the child node lane). We cannot perform a lane change if the
obstacle ahead is very near to us. Therefore, for the obstacles
ahead and in the parent node lane, the obstacle band should
not be in the specified distance V ahead of the parent node,
where V is equal to the parent node velocity.

In both conditions, it is obvious that if the child node of a
lane with decreasing speed is blocked, the next two children
of the same lane (with the same speed and accelerating

TABLE II
THE FLOW CHART OF OBSTACLE AVOIDANCE

if (obstacles in child node lane)
if (child node≺ obstacle band ≺ Image parent node)

child node is invalid.
else if (obstacles in parent node lane)

if (parent node≺ obstacle band ≺ parent node+V meter)
child node is invalid.

speed) will be blocked as well, and we must put them in
the closed list in our A∗ planner. Also if the child node
with the same speed of a lane is blocked, the next child of
the same lane (with accelerating speed) should be blocked
and we do not need to check them again. In this way can
avoid unnecessary calculations for obstacle avoidance.

D. Cost Function

At each iteration of the FU-A∗ algorithm, the free nodes in
the open list are sorted based on minimizing a cost function
which is defined as follows:

f (n) = g(n)+ p(n)+h(n) (3)

The cost function contains three terms. The first term (g(n))
is the travel time of reaching a node, which is defined by
increasing the step from start point.
The second term (p(n)) penalizes hazardous motions, such
as going to the adjacent lane which costs k1. Aborting a lane
change maneuver and going back to the previous lane can
cause other drivers to be confused and passenger discomfort.
Therefore, if in the last trajectory the car decided to do a
lane change in the first T seconds of trajectory, changing
this decision is penalized by k2, which means the planner
shall not change its decision until a lane change saves more
than k2 seconds to reach the goal. Another discomfort action
is unnecessary braking, therefore decreasing speed costs k3,
which means till braking does not provide us more than k3
seconds time saving, it will not be chosen.
The third term (h(n)) is the distance to the goal point which
leads to the preferrence of search solutions closer to the goal.

E. Reaching the Goal

The search algorithm must stop when the car reaches
the goal point. The goal point is not necessarily an integer
multiple of flexible units, therefore if the goal point is
between parent and child nodes, the parent node will be
chosen as the end node of the graph.
In the case of a blocked street, the search algorithm cannot
reach the goal. Therefore, based on the obstacle distance,
a ”smooth brake” or ”emergency brake” maneuver will be
chosen as the desired trajectory.

III. PRACTICAL ISSUES

The FU-A∗ path gives us a sequence of the set points
which their distance are d =V T , being V the former speed
of the car. Thus, the distance is proportional to the speed.
The long distance between set points causes two issues:
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• the car may not stay on the street lane;
• a big difference between the points of the resulting

trajectory results in a large error for control input which
causes uncomfortable steering or gas changes.

To deal with these issues, the gaps between the points of the
solution trajectory are filled with subsampling points (for
every meter) w.r.t. the drive lane spline or a predefined lane
changing spline described in the following sub-section. If the
parent and child nodes are at the same lane then the drive
lane spline is used for the sampling points. Otherwise the
lane change spline as described below is sampled.

Fig. 5. Resampling along the road: parent and child nodes are at the same
lane, therefore we subsample for every meter along the drive spline from
parent node toward the child node.

A. Predefined Lane Changing Spline

To have a smooth and convenient lane change, a cubic
polynomial is defined between parent node and child node
in the adjacent lane. The time distance between the parent
and child nodes is T seconds. This time should be practically
sufficient for a lane change. To find the parameters of a cubic
polynomial four assumptions are needed. The first and end
points of the spline are equal to the parent and child nodes’
position. The first derivative of the start point and end point
must be the same as the first derivative of the drive lane
splines at the same positions.
In order to avoid set points jumping during a lane change, and
to allow the car to follow the same trajectory until it finishes
the lane change, it is important not to update the predefined
spline during a lane change maneuver until the corresponding
child node stays at the same lane. But, if during a lane change
the car decides to go back to the previous lane, the new spline
between the current position of the car and child node will
be defined and sampled.

IV. SIMULATION

A comprehensive simulation study, is performed to val-
idate the proposed algorithm. In this section two common
scenarios are simulated to show the safety and efficiency of
the proposed algorithm.

The algorithm and simulation was implemented using
the ROS framework. The FU-A∗ trajectory planning for
the autonomous car ran at 20 Hz, and a path planner

Fig. 6. Resampling along predefined cubic spline: parent and child nodes
are at the different lanes, a cubic spline is defined between parent and child
nodes.

(following the lane road) for the other cars ran at 100 Hz.
The simulated road map is the map of the former Tempelhof
airport, Berlin (Fig. 7). The FU-A∗ parameters used in
simulation are described in table III.

TABLE III
FU-A∗ PARAMETERS USED IN SIMULATION

T (sec.) k1 (sec.) k2 (sec.) k3 (sec.)
3 3 10 20

Fig. 7. Map of former Tempelhof airport (Berlin, Germany): grid cell size
is 10 meter.

Fig. 8 illustrates a simple lane change maneuver. The
sequence points of FU-A∗ are shown with diamond markers.
The predicted obstacle distribution centers are shown with
circle markers. The colors of the diamonds and circle markers
for each sample time are the same, which are described in
the legend. The color changes from pink to green over the
time. The black diamond shows the goal point. The color
of the lane between the markers shows speed of the action
between nodes. The speed color changes from red to green
when the velocity changes from 0 to 18 m/s.

In the first test the autonomous car merge to traffic speed
as shown in Fig. 9. The autonomous car decreases speed from
10 m/s to 6 m/s to merge into traffic speed and to plan with
the traffic speed. The sequence pictures shall illustrate the car
position and behaviour overtime with 3 seconds timestamp.
In the second scenario the car ahead breaks instantaneously,
therefore the autonomous car decreases its speed and then
overtakes from the left side while caring about the car driving
on the left lane Fig. 10. The sequence pictures illustrate

11



Fig. 8. Simple overtaking: the colors of diamonds and circles show the time
sequences. The sequence pictures illustrate the car position and behaviour
overtime with 3 seconds timestamp. The car increases the speed from 8m/s
to 9m/s and overtakes.

Fig. 9. Merge to traffic: the sequence pictures illustrate the car position
and behaviour overtime with 3 seconds timestamp.

the car position and behaviour over time with 1 second
timestamp.

Interested readers are encouraged to watch a video of the
simulations at https://youtu.be/Lw_Mk37N6G0.

Fig. 10. Decrease the speed and overtake: the sequence pictures illustrate
the car position and behaviour overtime with 1 second timestamp.

V. CONCLUSION

FU-A∗, our proposed algorithm, is a new approach for
trajectory planning in a structured urban area, considering
static and dynamic obstacles. Its output trajectory is locally
optimized and feasible. Dynamic obstacles in the road maps
are carefully considered by utilizing a predictive approach
that takes into account the velocity of the obstacles and the
spline of the road. Simulation results, in which we used the
simulated autonomous car ”MadeInGermany and Tempelhof,
Berlin road map, revealed the validity and reliablity of our
proposed algorithm. The work is in progress to validate the

algorithm using our real platform MadeInGermany in reality
and using simulated obstacles, that will be reported in the
future work.
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